Trop Biomed, 2012 Sep;29(3):372-80.
PMID: 23018500 MyJurnal

Abstract

Prior to the implementation of Haemophilus influenzae type b vaccination worldwide, H. influenzae has been one of the main causative agents of community acquired pneumonia and meningitis in children. Due to the lack of information on the characteristics of the H. influenzae isolates that have previously been collected in Malaysia, the H. influenzae were assessed of their microbial susceptibility to commonly used antibiotics. Emphasis was made on strains that were resistance to co-trimoxazole (SXT) and their mode of transfer of the antibiotic resistance determinants were examined. A collection of 34 H. influenzae isolates was serotyped and antimicrobial susceptibility tests were performed to 11 antibiotics. To the isolates that were found to be resistant to co-trimoxazole, minimum inhibition concentration (MIC) to SXT was performed using Etest while agar dilution method was used to measure the individual MICs of trimethoprim (TMP) and sulfamethoxazole (SUL). These isolates were also examined for presence of plasmid by PCR and isolation method. Conjugal transfers of SXT-resistant genes to SXT-susceptible hosts were performed to determine their rate of transfer. Result showed that 20.6% of the total number of isolates was serotype B while the remaining was non-typeable. Antimicrobial susceptibility profile of all the isolates revealed that 58.8% was resistant to at least one antibiotic. Majority of these isolates were equally resistant to ampicillin and tetracycline (29.4% each), followed by resistance to SXT (26.5%). From nine isolates that were found to be SXT-resistant, five contained plasmid/s. Conjugal transfer experiment showed that these five isolates with plasmid transferred SXT-resistance determinants at a higher frequency than those without. From these observations, it is postulated that plasmid is not involved in the transfer of SXT-resistance genes but presence of plasmid facilitates their transfer. The information obtained from this study provides some basic knowledge on the antimicrobial susceptibility pattern of the H. influenzae isolates and their mode of transfer of SXT-resistance genes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.