Affiliations 

  • 1 Faculty of Pharmacy, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
J Control Release, 2005 Jun 2;104(3):461-75.
PMID: 15911046

Abstract

The influence of microwave irradiation on the drug release properties of freshly prepared and aged alginate, alginate-chitosan and chitosan beads was investigated. The beads were prepared by extrusion method with sulphathiazole as a model drug. The dried beads were subjected to microwave irradiation at 80 W for 10 min, 20 min or three consecutive cycles of 10 and 20 min, respectively. The profiles of drug dissolution, drug content, drug stability, drug polymorphism, drug-polymer interaction, polymer crosslinkage and complexation were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infra-red spectroscopy. The chemical stability of drug embedded in beads was unaffected by microwave conditions and length of storage time. The release property of drug was mainly governed by the extent of polymer interaction in beads. The aged alginate beads required intermittent cycles of microwave irradiation to induce drug release retarding effect in contrast to their freshly prepared samples. Unlike the alginate beads, the level of polymer interaction was higher in aged alginate-chitosan beads than the corresponding fresh beads. The drug release retarding property of aged alginate-chitosan beads could be significantly enhanced through subjecting the beads to microwave irradiation for 10 min. No further change in drug release from these beads was observed beyond 30 min of microwave irradiation. Unlike beads containing alginate, the rate and extent of drug released from the aged chitosan beads were higher upon treatment by microwave in spite of the higher degree of polymer interaction shown by the latter on prolonged storage. The observation suggested that the response of polymer matrix to microwave irradiation in induction of drug release retarding property was largely affected by the molecular arrangement of the polymer chains.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.