Template-assisted growth is an important nanoelectrochemical deposition technique for synthesizing one-dimensional (1-D) nanostructures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodisation of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nanostructures in the form of nanowires using PAA templates as scaffolds. Axial heterostructured and homogeneous nanowires formed by engineering materials configuration via composition and/or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to elucidate the microstructures, morphologies and chemical compositions of the nanowires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nanostructures have useful applications as critical components in nanosensor devices and various areas of nanotechnology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals.