Thermoelectric nanostructures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (e.g. from nuclear power plant, fossil fuel burning, automotives and household appliances). In this study, large-area vertically-aligned silicon nanowire (SiNW) arrays were synthesized in an aqueous solution containing AgN•i and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nanowire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of um. Te/Bi2Tex.Si thermoelectric core-shell nanostructures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTe02+ and 139' /HTe02+ ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. The surface-modified SiNWs of core-shell structures had roughened surface morphologies and, therefore, higher surface-to-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nanodevices. Growth study on the SiNWs and core-shell nanostructures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations.