Displaying publications 1 - 20 of 150 in total

Abstract:
Sort:
  1. Al Zoubi OM, Normah MN
    Cryo Letters, 2015 Nov-Dec;36(6):379-91.
    PMID: 26963884
    To further understand the survival characteristics of desiccation-sensitive excised embryonic axes of Fortunella polyandra to desiccation and cryopreservation it is necessary to study the impact of drying rates on both the ultrastructure and electrolyte leakage.
    Matched MeSH terms: Electrolytes
  2. Rashiddy Wong F, Ahmed Ali A, Yasui K, Hashim AM
    Nanoscale Res Lett, 2015 Dec;10(1):943.
    PMID: 26055478 DOI: 10.1186/s11671-015-0943-y
    We report the growth of gallium-based compounds, i.e., gallium oxynitride (GaON) and gallium oxide (Ga2O3) on multilayer graphene (MLG) on insulator using a mixture of ammonium nitrate (NH4NO3) and gallium nitrate (Ga(NO3)3) by electrochemical deposition (ECD) method at room temperature (RT) for the first time. The controlling parameters of current density and electrolyte molarity were found to greatly influence the properties of the grown structures. The thicknesses of the deposited structures increase with the current density since it increases the chemical reaction rates. The layers grown at low molarities of both solutions basically show grain-like layer with cracking structures and dominated by both Ga2O3 and GaON. Such cracking structures seem to diminish with the increases of molarities of one of the solutions. It is speculated that the increase of current density and ions in the solutions helps to promote the growth at the area with uneven thicknesses of graphene. When the molarity of Ga(NO3)3 is increased while keeping the molarity of NH4NO3 at the lowest value of 2.5 M, the grown structures are basically dominated by the Ga2O3 structure. On the other hand, when the molarity of NH4NO3 is increased while keeping the molarity of Ga(NO3)3 at the lowest value of 0.8 M, the GaON structure seems to dominate where their cubic and hexagonal arrangements are coexisting. It was found that when the molarities of Ga(NO3)3 are at the high level of 7.5 M, the grown structures tend to be dominated by Ga2O3 even though the molarity of NH4NO3 is made equal or higher than the molarity of Ga(NO3)3. When the grown structure is dominated by the Ga2O3 structure, the deposition process became slow or unstable, resulting to the formation of thin layer. When the molarity of Ga(NO3)3 is increased to 15 M, the nanocluster-like structures were formed instead of continuous thin film structure. This study seems to successfully provide the conditions in growing either GaON-dominated or Ga2O3-dominated structure by a simple and low-cost ECD. The next possible routes to convert the grown GaON-dominated structure to either single-crystalline GaN or Ga2O3 as well as Ga2O3-dominated structure to single-crystalline Ga2O3 structure have been discussed.
    Matched MeSH terms: Electrolytes
  3. Khezri R, Hosseini S, Lahiri A, Motlagh SR, Nguyen MT, Yonezawa T, et al.
    Int J Mol Sci, 2020 Oct 02;21(19).
    PMID: 33023274 DOI: 10.3390/ijms21197303
    Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.
    Matched MeSH terms: Electrolytes/pharmacology; Electrolytes/chemistry*
  4. Khalik WF, Ong SA, Ho LN, Wong YS, Voon CH, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16716-21.
    PMID: 27184147 DOI: 10.1007/s11356-016-6840-9
    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
    Matched MeSH terms: Electrolytes*
  5. Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM
    Int J Mol Sci, 2019 Jul 09;20(13).
    PMID: 31323971 DOI: 10.3390/ijms20133369
    Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.
    Matched MeSH terms: Electrolytes/chemistry*
  6. John AS, Sidek MM, Thang LY, Sami S, Tey HY, See HH
    J Chromatogr A, 2021 Feb 08;1638:461868.
    PMID: 33453653 DOI: 10.1016/j.chroma.2020.461868
    One of the major drawbacks of electrophoresis in both capillary and microchip is the unsatisfactory sensitivity. Online sample preconcentration techniques can be regarded as the most common and powerful approaches commonly applied to enhance overall detection sensitivity. While the advances of various online preconcentration strategies in capillary and microchip employing aqueous background electrolytes are well-reviewed, there has been limited discussion of the feasible preconcentration techniques specifically developed for capillary and microchip using nonaqueous background electrolytes. This review provides the first consolidated overview of various online preconcentration techniques in nonaqueous capillary and microchip electrophoresis, covering the period of the last two decades. It covers developments in the field of sample stacking, isotachophoresis, and micellar-based stacking. Attention is also given to multi-stacking strategies that have been used for nonaqueous electrophoresis.
    Matched MeSH terms: Electrolytes/chemistry
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Aug 10;121(6):062002.
    PMID: 30141647 DOI: 10.1103/PhysRevLett.121.062002
    The pseudorapidity distributions of dijets as functions of their average transverse momentum (p_{T}^{ave}) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p_{T}^{ave} intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
    Matched MeSH terms: Electrolytes
  8. Amir S, Mohamed N, Hashim Ali S
    Sains Malaysiana, 2011;40:1123-1127.
    Due to their high ionic conductivity, solid polymer electrolyte (SPE) systems have attracted wide spread attention as the most appropriate choice to fabricate all-solid-state electrochemical devices, namely batteries, sensors and fuel cells. In this work, ion conductive polymer electrolyte membranes have been prepared for battery fabrication. However, fractals were found to grow in these polymer electrolyte membranes weeks after they were prepared. It was believed that the formation of fractal aggregates in these membranes were due to ionic movement. The discovery of fractal growth pattern can be used to understand the effects of such phenomenon in the polymer electrolyte membranes. Digital images of the fractal growth patterns were taken and a simulation model was developed based on the Brownian motion theory and a fractal dialect known as L-system. A computer coding has been designed to simulate and visualize the fractal growth.
    Matched MeSH terms: Electrolytes
  9. Chin LY, Zainal Z, Hussein MZ, Tee TW
    J Nanosci Nanotechnol, 2011 Jun;11(6):4900-9.
    PMID: 21770120
    The fabrication of TiO2 nanotubes (TNT) was carried out by electrochemical anodization of Ti in aqueous electrolyte containing NH4F. The effect of electrolyte pH, applied voltage, fluoride concentration and anodization duration on the formation of TNT was investigated. It was observed that self-organized TNT can be formed by adjusting the electrolyte to pH 2-4 whereby applied voltage of 10-20 V can be performed to produce highly ordered, well-organized TNT. At 20 V, TNT can be fabricated in the concentration range of 0.07 M to 0.20 M NH4F. Higher fluoride concentration leads to etching of Ti surface and reveals the Ti grain boundaries. The prepared TNT films also show an increase in depth and in size with time and the growth of TNT films reach a steady state after 120 minutes. The morphology and geometrical aspect of the TNT would be an important factor influencing the photoelectrochemical response, with higher photocurrent response is generally associated with thicker layer of TNT. Consequently, one can tailor the resulting TNT to desired surface morphologies by simply manipulating the electrochemical parameters for wide applications such as solar energy conversion and photoelectrocatalysis.
    Matched MeSH terms: Electrolytes
  10. Khoo KS, Chia WY, Wang K, Chang CK, Leong HY, Maaris MNB, et al.
    Sci Total Environ, 2021 Nov 01;793:148705.
    PMID: 34328982 DOI: 10.1016/j.scitotenv.2021.148705
    Fuel cells (FCs) are a chemical fuel device which can directly convert chemical energy into electrical energy, also known as electrochemical generator. Proton exchange membrane fuel cells (PEMFCs) are one of the most appealing FC systems that have been broadly developed in recent years. Due to the poor conductivity of electrolyte membrane used in traditional PEMFC, its operation at higher temperature is greatly limited. The incorporation of ionic liquids (ILs) which is widely regarded as a greener alternative compared to traditional solvents in the proton exchange membrane electrolyte shows great potential in high temperature PEMFCs (HT-PEMFCs). This review provides insights in the latest progress of utilizing ILs as an electrochemical electrolyte in PEMFCs. Besides, electrolyte membranes that are constructed by ILs combined with polybenzimidazole (PBI) have many benefits such as better thermal stability, improved mechanical properties, and higher proton conductivity. The current review aims to investigate the newest development and existing issues of ILs research in electrolyte and material selection, system fabrication method, synthesis of ILs, and experimental techniques. The evaluation of life cycle analysis, commercialization, and greenness of ILs are also discussed. Hence, this review provides insights to material scientists and develops interest of wider community, promoting the use of ILs to meet energy challenges.
    Matched MeSH terms: Electrolytes
  11. Ahmad NH, Isa MIN
    Carbohydr Polym, 2016 Feb 10;137:426-432.
    PMID: 26686147 DOI: 10.1016/j.carbpol.2015.10.092
    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system.
    Matched MeSH terms: Electrolytes/chemistry*
  12. Asif M, Jabeen Q, Abdul-Majid AM, Atif M
    Pak J Pharm Sci, 2014 Nov;27(6):1811-7.
    PMID: 25362605
    The aim of the study was to evaluate the effect of crude aqueous extract of Boswellia serrata Roxb. oleo gum on urinary electrolytes, pH and diuretic activity in normal albino rats. Moreover, acute toxicity of the gum extract was assessed using mice. Albino rats were divided into five groups. Control group received normal saline (10 mg/kg), reference group received furosemide (10 mg/kg) and test groups were given different doses of crude extract (10, 30 and 50 mg/kg) by intra-peritoneal route, respectively. The Graph Pad Prism was used for the statistical analysis and p < 0.05 was considered statistically significant. Significant diuretic, kaliuretic and natriuretic effects were observed in the treated groups in a dose dependent manner. Diuretic index showed good diuretic activity of the crude extract. Lipschitz values indicated that the crude extract, at the dose of 50 mg/kg, showed 44 % diuretic activity compared to the reference drug. No lethal effects were observed among albino mice even at the higher dose of 3000 mg/kg. It is concluded that aqueous extract of Boswellia serrata oleo gum, at the dose of 50 mg/kg showed significant effects on urinary volume and concentration of urinary electrolytes with no signs of toxicity.
    Matched MeSH terms: Electrolytes/urine
  13. Kadir MF, Aspanut Z, Majid SR, Arof AK
    PMID: 21237698 DOI: 10.1016/j.saa.2010.12.051
    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH(4)NO(3)) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm(-1) and the amine band at 1591 cm(-1) to 1650 and 1557 cm(-1) respectively and the shift of the hydroxyl band from 3377 to 3354 cm(-1). The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm(-1) and is observed at 3343 cm(-1) in the spectrum of the PVA film. On addition of NH(4)NO(3) up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm(-1) to 1642, 1541 and 3348 cm(-1) indicating that the chitosan has complexed with the salt. In the PVA-NH(4)NO(3) spectrum, the hydroxyl band has shifted from 3343 to 3272 cm(-1) on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH(4)NO(3) systems. In the spectrum of PVA-chitosan-NH(4)NO(3)-EC complex, the doublet CO stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.
    Matched MeSH terms: Electrolytes/chemistry*
  14. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Electrolytes/chemistry
  15. Harvey BJ, Thomas W
    Steroids, 2018 05;133:67-74.
    PMID: 29079406 DOI: 10.1016/j.steroids.2017.10.009
    Aldosterone acts through the mineralocorticoid receptor (MR) to modulate gene expression in target tissues. In the kidney, the principal action of aldosterone is to promote sodium conservation in the distal nephron and so indirectly enhance water conservation under conditions of hypotension. Over the last twenty years the rapid activation of protein kinase signalling cascades by aldosterone has been described in various tissues. This review describes the integration of rapid protein kinase D signalling responses with the non-genomic actions of aldosterone and transcriptional effects of MR activation.
    Matched MeSH terms: Electrolytes/metabolism*
  16. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
    Matched MeSH terms: Electrolytes/chemistry*
  17. Aziz SB, Abdulwahid RT, Hamsan MH, Brza MA, Abdullah RM, Kadir MFZ, et al.
    Molecules, 2019 Sep 27;24(19).
    PMID: 31569650 DOI: 10.3390/molecules24193508
    In this report, a facile solution casting technique was used to fabricate polymer blend electrolytes of chitosan (CS):poly (ethylene oxide) (PEO):NH4SCN with high electrochemical stability (2.43V). Fourier transform infrared (FTIR) spectroscopy was used to investigate the polymer electrolyte formation. For the electrochemical property analysis, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques were carried out. Referring to the FTIR spectra, a complex formation between the added salt and CS:PEO was deduced by considering the decreasing and shifting of FTIR bands intensity in terms of functional groups. The CS:PEO:NH4SCN electrolyte was found to be electrochemically stable as the applied voltage linearly swept up to 2.43V. The cyclic voltammogram has presented a wide potential window without showing any sign of redox peaks on the electrode surface. The proved mechanisms of charge storage in these fabricated systems were found to be double layer charging. The EIS analysis showed the existence of bulk resistance, wherein the semicircle diameter decreased with increasing salt concentration. The calculated maximum DC conductivity value was observed to be 2.11 × 10-4 S/cm for CS:PEO incorporated with 40 wt% of NH4SCN salt. The charged species in CS:PEO:NH4SCN electrolytes were considered to be predominantly ionic in nature. This was verified from transference number analysis (TNM), in which ion and electron transference numbers were found to be tion = 0.954 and tel = 0.045, respectively. The results obtained for both ion transference number and DC conductivity implied the possibility of fabricating electrolytes for electrochemical double layer capacitor (EDLC) device application. The specific capacitance of the fabricated EDLC was obtained from the area under the curve of the CV plot.
    Matched MeSH terms: Electrolytes/chemistry*
  18. Ayub, S.F., Nazir, K., Aziz, A.F., Ali, A.M.M., Saaid, S.I.Y., Yahya, M.Z.A.
    MyJurnal
    This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected. It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.
    Matched MeSH terms: Electrolytes
  19. Ong YP, Ho LN, Ong SA, Banjuraizah J, Ibrahim AH, Lee SL, et al.
    Chemosphere, 2019 Mar;219:277-285.
    PMID: 30543963 DOI: 10.1016/j.chemosphere.2018.12.004
    Photocatalytic fuel cell (PFC) is considered as a sustainable green technology which could degrade organic pollutant and generate electricity simultaneously. A synergistic double-sided ZnO/BaTiO3 loaded carbon plate heterojunction photoanode was fabricated in different ratios by using simple ultrasonication and mixed-annealed method. The double-sided design of photoanode allowed the lights irradiated at both sides of the photoanode. The ferroelectricity fabricated photoanode was applied in a membraneless PFC with platinum-loaded carbon as the cathode. Results revealed that the photoanode with 1:1 ratio of BaTiO3 and ZnO exhibited a superior photocatalytic activity among all the photoanodes prepared in this study. The heterojunction of this photoanode was able to achieve up to a removal efficiency of 93.67% with a maximum power density of 0.5284 μW cm-2 in 10 mg L-1 of Reactive Red 120 (RR120) without any supporting electrolyte. This photoanode was able to maintain at high performance after recycling 3 times. Overloading of ZnO above 50% on BaTiO3 could lead to deterioration of the performance of PFC due to the charge defects and light trapping ability. The interactions, interesting polarizations of the photocatalysts and proposed mechanism of the n-n type heterojunction in the photoanode of ZnO/BaTiO3 was also discussed.
    Matched MeSH terms: Electrolytes
  20. Abdul Aziz Ahmad, Raihan Othman, Faridah Yusof, Mohd Firdaus Abdul Wahab
    Sains Malaysiana, 2014;43:459-465.
    A hybrid biofuel cell, a zinc-air cell employing laccase as the oxygen reduction catalyst is investigated. A simple cell design is employed; a membraneless single chamber and a freely suspended laccase in the buffer electrolyte. The cell is characterised based on its open-circuit voltage, power density profile and galvanostatic discharge at 0.5 mA. The activity of laccase as an oxidoreductase is substantiated from the cell discharge profiles. The use of air electrode in the cell design enhanced the energy output by 14%. The zinc-air biofuel cell registered an open-circuit voltage of 1.2 V and is capable to deliver a maximum power density of 1.1 mWcm-2 at 0.4 V. Despite its simple design features, the power output is comparable to that of biocatalytic cell utilising a much more complex system design.
    Matched MeSH terms: Electrolytes
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links