Affiliations 

  • 1 Malaysian Nuclear Agency
  • 2 Universiti Teknologi MARA Shah Alam
MyJurnal

Abstract

Anthropogenic airborne depositions of 210Po,
210Pb and 210Po/210Pb in the mosses and surface soils
collected at the vicinity of a coal-fired power plant were studied. The purpose of the study was to
determine activity concentrations of 210Po,
210Pb and 210Po/210Pb for assessing their variation
accumulation in the mosses and surface soils collected at the vicinity of a coal-fired power plant.
Other purposes were to determine their concentration factor (CF) in relation to track the potential
source of those radionuclides and to identify most suitable moss species as a biological indicator
for atmospheric deposition contaminants. In this study, different species of moss Leucobryum
aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in
May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in
Pontian, Johor. The activity concentrations of 210Po,
210Pb and 210Po/210Pb in mosses were in the
range of 76.81 ± 4.94 – 251.33 ± 16.33 Bq/kg dry wt., 54.37 ± 3.38 – 164.63 ± 11.64 Bq/kg dry wt.
and 1.10 – 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil
were 33.53 ± 2.10 – 179.67 ± 12.15 Bq/kg dry wt., 20.55 ± 1.33 – 106.62 ± 6.64 Bq/kg dry wt. and
1.61 – 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more
210Po and 210Pb, wide geographical distribution, most abundant and high CF, therefore, the
findings can be concluded this species was the most suitable as a biological indicator for
atmospheric deposition contaminants such as 210Po and 210Pb. Furthermore, it is clear the
accumulation of 210Po and 210Pb in mosses might be supplied from various sources of atmospheric
deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities,
burned fuel fossil and forest; and other potential sources. Meanwhile, the