Affiliations 

  • 1 Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
  • 2 Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
  • 3 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
  • 4 Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan
  • 5 Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address: PauLoke.Show@nottingham.edu.my
Bioresour Technol, 2019 Jan;271:30-36.
PMID: 30261334 DOI: 10.1016/j.biortech.2018.09.093

Abstract

Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.