Displaying publications 1 - 20 of 288 in total

  1. Brown MK, Shahar S, You YX, Michael V, Majid HA, Manaf ZA, et al.
    BMJ Open, 2021 07 23;11(7):e044628.
    PMID: 34301647 DOI: 10.1136/bmjopen-2020-044628
    INTRODUCTION: Current salt intake in Malaysia is high. The existing national salt reduction policy has faced slow progress and does not yet include measures to address the out of home sector. Dishes consumed in the out of home sector are a known leading contributor to daily salt intake. This study aims to develop a salt reduction strategy, tailored to the out of home sector in Malaysia.

    METHODS AND ANALYSIS: This study is a qualitative analysis of stakeholder views towards salt reduction. Participants will be recruited from five zones of Malaysia (Western, Northern, Eastern and Southern regions and East Malaysia), including policy-makers, non-governmental organisations, food industries, school canteen operators, street food vendors and consumers, to participate in focus group discussions or in-depth interviews. Interviews will be transcribed and analysed using thematic analysis. Barriers will be identified and used to develop a tailored salt reduction strategy.

    ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Universiti Kebangsaan Malaysia Medical Research Ethics Committee (UKM PPI/1118/JEP-2020-524), the Malaysian National Medical Research Ethics Committee (NMRR-20-1387-55481 (IIR)) and Queen Mary University of London Research Ethics Committee (QMERC2020/37) . Results will be presented orally and in report form and made available to the relevant ministries for example, Ministry of Health, Ministry of Education and Ministry of Trade to encourage adoption of strategy as policy. The findings of this study will be disseminated through conference presentations, peer-reviewed publications and webinars.

    Matched MeSH terms: Sodium Chloride*; Sodium Chloride, Dietary*
  2. Jasmine NJ, Rajam A, Muthiah PT, Stanley N, Razak IA, Rosli MM
    Acta Crystallogr E Crystallogr Commun, 2015 Sep 1;71(Pt 9):o655-6.
    PMID: 26396888 DOI: 10.1107/S2056989015014796
    In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  3. Bagabas AA, Alhoshan SB, Ghabbour HA, Chidan Kumar CS, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o62-3.
    PMID: 25705511 DOI: 10.1107/S2056989014027297
    In the title salt, C6H11NH3 (+)·SCN(-), the cyclo-hexyl-ammonium ring adopts a slightly distorted chair conformation. The ammonium group occupies an equatorial position to minimize 1,3 and 1,5 diaxial inter-actions. In the crystal, the components are linked by N-H⋯N and N-H⋯S hydrogen-bonding inter-actions, resulting in a three-dimensional network.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  4. Sivajeyanthi P, Balasubramani K, Jeevaraj M, Thanigaimani K, Khalib NC, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):o376-7.
    PMID: 26090174 DOI: 10.1107/S2056989015008397
    In the crystal of the title mol-ecular salt, C7H9N6O(+)·NO3 (-), the cations and anions are linked via N-H⋯O and O-H⋯O hydrogen bonds, forming sheets parallel to (100). Within the sheets there are numerous hydrogen-bonding ring motifs.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  5. Sheshadri SN, Kwong HC, Chidan Kumar CS, Quah CK, Siddaraju BP, Veeraiah MK, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 May 01;74(Pt 5):752-756.
    PMID: 29850106 DOI: 10.1107/S2056989018006217
    In the cation of the title salt, C20H19N2O+·Br-, the phenyl rings are inclined to one another by 38.38 (8)°, whereas the central phenyl ring and the pyridiniminium ring are almost perpendicular with a dihedral angle of 87.37 (9)°. The N+=C cationic double bond was verified by the shortened bond length of 1.337 (2) Å. In the crystal, the Br- anion is linked to the cation by an N-H⋯Br hydrogen bond. C-H⋯O hydrogen bonds link adjacent pyridiniminium cations into inversion dimers with an R22(18) graph-set motif. These dimers are stacked in a phen-yl-phenyl T-shaped geometry through C-H⋯π inter-actions. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter-molecular inter-actions.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  6. Abu Hassan LH
    Silicon nanomaterial was prepared using the peroxide/acid/salt technique in which an aqueous silicon-based salt solution was added to H2O2/HF etchants. In order to optimize the experimental conditions for silicon nanomaterial production, the amount of nanomaterial produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 mL of an aqueous 1 mg/L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nanomaterial present. The results indicated that using 10 mL of the metasilicate solution produced the highest amount of nanomaterial. Furthermore, the results demonstrated that the peroxide/acid/salt technique results in the enhancement of the production yield of silicon nanomaterial at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nanomaterial is proposed. The auxiliary nanomaterial is deposited into the porous network causing an increase in the amount of nanomaterial produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  7. Ng HS, Kee PE, Wu YC, Chen L, Wong SYW, Lan JC
    J Biosci Bioeng, 2021 Nov;132(5):513-518.
    PMID: 34479804 DOI: 10.1016/j.jbiosc.2021.07.004
    Microbial astaxanthin with strong antioxidant activity is greatly demanded for diverse applications. Extractive disruption in aqueous biphasic system (ABS) integrates the cells disruption and biomolecules recovery processes in one-step operation, allowing the direct recovery of intracellular biomolecules with biphasic system upon released from cells. In this study, astaxanthin was recovered from recombinant Kluyveromyces marxianus yeast cells via extractive disruption using alcohol/salt ABS. Recombinant K. marxianus yeast is engineered to produce high concentration of free form astaxanthin. Highest partition coefficient (K = 90.02 ± 2.25) and yield (Y = 96.80% ± 0.05) of astaxanthin were obtained with ABS composed of 20% (w/w) 1-propanol and 20% (w/w) sodium citrate of pH 5, 0.5% (w/w) yeast cells loading and additional of 1% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 to improve the migration of astaxanthin to alcohol-rich top phase. The incorporation of 2.5 h of ultrasonication to the biphasic system further enhanced the astaxanthin recovery in ABS. The direct recovery of astaxanthin from recombinant K. marxianus cells was demonstrated with the ultrasonication-assisted alcohol/salt ABS which integrates the extraction and concentration of astaxanthin in a single-step operation.
    Matched MeSH terms: Sodium Chloride*
  8. Faizah M, Kanaheswari Y, Thambidorai C, Zulfiqar M
    Biomed Imaging Interv J, 2011 Jan-Mar;7(1):e7.
    PMID: 21655116 MyJurnal DOI: 10.2349/biij.7.1.e7
    To compare echocontrast cystosonography (ECS) using in-vivo agitated saline with fluoroscopic micturating cystourethrography (MCU) in the detection and grading of vesicoureteric reflux (VUR).
    Matched MeSH terms: Sodium Chloride
  9. Tang MS, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, et al.
    Nanotechnology, 2016 Aug 19;27(33):332002.
    PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002
    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  10. Luo D, Li P, Yue Y, Ma J, Yang H
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471372 DOI: 10.3390/s17050962
    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  11. Ogle CW, Ng YT
    Med J Malaya, 1969 Mar;23(3):174-8.
    PMID: 4240069
    Matched MeSH terms: Sodium Chloride*
  12. Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL
    Bioresour Technol, 2019 Oct;290:121794.
    PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794
    This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  13. Tuan Mohamood NFA, Zainuddin N, Ahmad Ayob M, Tan SW
    Chem Cent J, 2018 Dec 06;12(1):133.
    PMID: 30523481 DOI: 10.1186/s13065-018-0500-8
    In this study, sago starch was modified in order to enhance its physicochemical properties. Carboxymethylation was used to introduce a carboxymethyl group into a starch compound. The carboxymethyl sago starch (CMSS) was used to prepare smart hydrogel by adding acetic acid into the CMSS powder as the crosslinking agent. The degree of substitution of the CMSS obtained was 0.6410. The optimization was based on the gel content and degree of swelling of the hydrogel. In this research, four parameters were studied in order to optimize the formation of CMSS-acid hydrogel. The parameters were; CMSS concentration, acetic acid concentration, reaction time and reaction temperature. From the data analyzed, 76.69% of optimum gel content was obtained with 33.77 g/g of degree of swelling. Other than that, the swelling properties of CMSS-acid hydrogel in different media such as salt solution, different pH of phosphate buffer saline solution as well as acidic and alkaline solution were also investigated. The results showed that the CMSS-acid hydrogel swelled in both alkaline and salt solution, while in acidic or low pH solution, it tended to shrink and deswell. The production of the hydrogel as a smart material offers a lot of auspicious benefits in the future especially related to swelling behaviour and properties of the hydrogel in different types of media.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  14. Mst Kamrun Nahar, Uda Hashim, Zarina Zakaria, Md Fazlul Bari
    Sains Malaysiana, 2017;46:719-724.
    This study examined the influence of pH and salt concentration on the protein solubility of slaughtered and non-slaughtered broiler chicken meat. Three types of salt (NaCl, Na2SO4, and (NH4)2SO4), five different pH levels (5.0, 6.0, 7.0, 8.0 and 9.0) and five salt concentrations (0.4, 0.8, 1.2, 1.6, and 2.0 M) were examined. Each type of salt showed distinctive activities for slaughtered and non-slaughtered meat protein solubility. Soluble protein concentration increased as pH increased (p<0.05) from pH5.0 to 8.0 and decreased from pH8.0 to 9.0. It was also observed that protein solubility increased as the salt concentration increased. Protein solubility significantly increased (p<0.05) in the non-slaughtered meat compared to the slaughtered meat at pH8.0 for Na2SO4 at 1.2 M.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  15. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Aug 1;71(Pt 8):937-40.
    PMID: 26396760 DOI: 10.1107/S2056989015013341
    In the title complex salt, [Au2{(C6H5)2PCH2P(C6H5)2}]Cl2·(CH3)2C=O·H2O, the dication forms an eight-membered {-PCPAu}2 ring with a transannular aurophilic inter-action [Au⋯Au = 2.9743 (2) Å]. The ring approximates a flattened boat conformation, with the two methyl-ene C atoms lying ca 0.58-0.59 Å above the least-squares plane defined by the Au2P4 atoms (r.m.s. deviation = 0.0849 Å). One Cl(-) anion functions as a weak bridge between the Au(I) atoms [Au⋯Cl = 2.9492 (13) and 2.9776 (12) Å]. The second Cl(-) anion forms two (water)O-H⋯Cl hydrogen bonds about a centre of inversion, forming a centrosymmetric eight-membered {⋯HOH⋯Cl}2 supra-molecular square. Globally, the dications and loosely associated Cl(-) anions assemble into layers lying parallel to the ac plane, being connected by C-H⋯Cl,π(phen-yl) inter-actions. The supra-molecular squares and solvent acetone mol-ecules are sandwiched in the inter-layer region, being connected to the layers on either side by C-H⋯Cl,O(acetone) inter-actions.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  16. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1305-1307.
    PMID: 28932461 DOI: 10.1107/S2056989017011252
    In the title mol-ecular salt, C6H10N3O(+)·C7H5O3(-), the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra-molecular O-H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N-H⋯O hydrogen bonds [R2(2)(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N-H⋯O hydrogen bonds into a tetra-meric DDAA array. The tetra-mers are linked by pairs of C-H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  17. Jotani MM, Syed S, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Feb 1;72(Pt 2):241-8.
    PMID: 26958398 DOI: 10.1107/S2056989016000980
    The asymmetric unit of the title salt, C14H16N4O2 (2+)·2C9H5O6 (-), comprises half a dication, being located about a centre of inversion, and one anion, in a general position. The central C4N2O2 group of atoms in the dication are almost planar (r.m.s. deviation = 0.009 Å), and the carbonyl groups lie in an anti disposition to enable the formation of intra-molecular amide-N-H⋯O(carbon-yl) hydrogen bonds. To a first approximation, the pyridinium and amide N atoms lie to the same side of the mol-ecule [Npy-C-C-Namide torsion angle = 34.8 (2)°], and the anti pyridinium rings are approximately perpendicular to the central part of the mol-ecule [dihedral angle = 68.21 (8)°]. In the anion, one carboxyl-ate group is almost coplanar with the ring to which it is connected [Cben-Cben-Cq-O torsion angle = 2.0 (3)°], whereas the other carboxyl-ate and carb-oxy-lic acid groups are twisted out of the plane [torsion angles = 16.4 (3) and 15.3 (3)°, respectively]. In the crystal, anions assemble into layers parallel to (10-4) via hy-droxy-O-H⋯O(carbon-yl) and charge-assisted hy-droxy-O-H⋯O(carboxyl-ate) hydrogen bonds. The dications are linked into supra-molecular tapes by amide-N-H⋯O(amide) hydrogen bonds, and thread through the voids in the anionic layers, being connected by charge-assisted pyridinium-N-O(carboxyl-ate) hydrogen bonds, so that a three-dimensional architecture ensues. An analysis of the Hirshfeld surface points to the importance of O-H⋯O hydrogen bonding in the crystal structure.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  18. Wardell JL, Wardell SM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Jun 1;72(Pt 6):872-7.
    PMID: 27308063 DOI: 10.1107/S2056989016008495
    The asymmetric unit of the title salt, C17H17F6N2O(+)·C10H8F3O3 (-), comprises two piperidin-1-ium cations and two carboxyl-ate anions. The cations, each having an l-shaped conformation owing to the near orthogonal relationship between the quinolinyl and piperidin-1-ium residues, are pseudo-enanti-omeric. The anions have the same absolute configuration but differ in the relative orientations of the carboxyl-ate, meth-oxy and benzene groups. Arguably, the most prominent difference between the anions occurs about the Cq-Om bond as seen in the Cc-Cq-Om-Cm torsion angles of -176.1 (3) and -67.1 (4)°, respectively (q = quaternary, m = meth-oxy and c = carboxyl-ate). The presence of Oh-H⋯Oc and Np-H⋯Oc hydrogen bonds leads to the formation of a supra-molecular chain along the a axis (h = hy-droxy and p = piperidin-1-ium); weak intra-molecular Np-H⋯Oh hydrogen bonds are also noted. Chains are connected into a three-dimensional architecture by C-H⋯F inter-actions. Based on a literature survey, related mol-ecules/cations adopt a uniform conformation in the solid state based on the letter L.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  19. Hizam SM, Yamin BM
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):o378.
    PMID: 26090175 DOI: 10.1107/S2056989015008385
    The title salt, C5H11N2S(+)·C7H4ClO2 (-), comprises a 2-amino-3-ethyl-4,5-di-hydro-1,3-thia-zol-3-ium cation in which the five-membered ring adopts an envelope conformation with the methyl-ene C adjacent to the S atom being the flap, and a planar 3-chloro-benzoate anion (r.m.s. deviation for the 10 non-H atoms = 0.021 Å). The most prominent feature of the crystal packing are N-H⋯O hydrogen bonds whereby the two amine H atoms bridge two carboxyl-ate O atoms resulting in the formation of a centrosymmetric 12-membered {⋯HNH⋯OCO}2 synthon involving two cations and two anions. These aggregates are linked by C-H⋯O inter-actions to form a supra-molecular chain along the a-axis direction.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links