Displaying publications 1 - 20 of 290 in total

Abstract:
Sort:
  1. Campbell NRC, Whelton PK, Orias M, Wainford RD, Cappuccio FP, Ide N, et al.
    J Hum Hypertens, 2023 Jun;37(6):428-437.
    PMID: 35581323 DOI: 10.1038/s41371-022-00690-0
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary/adverse effects
  2. Khezripour S, Rezaie M, Hassanpour M, Hassanpour M, Rashed Iqbal Faruque M, Uddin Khandaker M
    PLoS One, 2023;18(8):e0288287.
    PMID: 37594963 DOI: 10.1371/journal.pone.0288287
    Various atomic and nuclear methods use hard (high-energy) X-rays to detect elements. The current study aims to investigate the hard X-ray production rate via high-energy proton beam irradiation of various materials. For which, appropriate conditions for producing X-rays were established. The MCNPX code, based on the Monte Carlo method, was used for simulation. Protons with energies up to 1650 MeV were irradiated on various materials such as carbon, lithium, lead, nickel, salt, and soil, where the resulting X-ray spectra were extracted. The production of X-rays in lead was observed to increase 16 times, with the gain reaching 0.18 as the proton energy increases from 100 MeV to 1650 MeV. Comparatively, salt is a good candidate among the lightweight elements to produce X-rays at a low proton energy of 30 MeV with a production gain of 0.03. Therefore, it is suggested to irradiate the NaCl target with 30 MeV proton to produce X-rays in the 0-2 MeV range.
    Matched MeSH terms: Sodium Chloride*; Sodium Chloride, Dietary
  3. Brown MK, Shahar S, You YX, Michael V, Majid HA, Manaf ZA, et al.
    BMJ Open, 2021 07 23;11(7):e044628.
    PMID: 34301647 DOI: 10.1136/bmjopen-2020-044628
    INTRODUCTION: Current salt intake in Malaysia is high. The existing national salt reduction policy has faced slow progress and does not yet include measures to address the out of home sector. Dishes consumed in the out of home sector are a known leading contributor to daily salt intake. This study aims to develop a salt reduction strategy, tailored to the out of home sector in Malaysia.

    METHODS AND ANALYSIS: This study is a qualitative analysis of stakeholder views towards salt reduction. Participants will be recruited from five zones of Malaysia (Western, Northern, Eastern and Southern regions and East Malaysia), including policy-makers, non-governmental organisations, food industries, school canteen operators, street food vendors and consumers, to participate in focus group discussions or in-depth interviews. Interviews will be transcribed and analysed using thematic analysis. Barriers will be identified and used to develop a tailored salt reduction strategy.

    ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Universiti Kebangsaan Malaysia Medical Research Ethics Committee (UKM PPI/1118/JEP-2020-524), the Malaysian National Medical Research Ethics Committee (NMRR-20-1387-55481 (IIR)) and Queen Mary University of London Research Ethics Committee (QMERC2020/37) . Results will be presented orally and in report form and made available to the relevant ministries for example, Ministry of Health, Ministry of Education and Ministry of Trade to encourage adoption of strategy as policy. The findings of this study will be disseminated through conference presentations, peer-reviewed publications and webinars.

    Matched MeSH terms: Sodium Chloride*; Sodium Chloride, Dietary*
  4. Bagabas AA, Alhoshan SB, Ghabbour HA, Chidan Kumar CS, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o62-3.
    PMID: 25705511 DOI: 10.1107/S2056989014027297
    In the title salt, C6H11NH3 (+)·SCN(-), the cyclo-hexyl-ammonium ring adopts a slightly distorted chair conformation. The ammonium group occupies an equatorial position to minimize 1,3 and 1,5 diaxial inter-actions. In the crystal, the components are linked by N-H⋯N and N-H⋯S hydrogen-bonding inter-actions, resulting in a three-dimensional network.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  5. Abu Hassan LH
    Silicon nanomaterial was prepared using the peroxide/acid/salt technique in which an aqueous silicon-based salt solution was added to H2O2/HF etchants. In order to optimize the experimental conditions for silicon nanomaterial production, the amount of nanomaterial produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 mL of an aqueous 1 mg/L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nanomaterial present. The results indicated that using 10 mL of the metasilicate solution produced the highest amount of nanomaterial. Furthermore, the results demonstrated that the peroxide/acid/salt technique results in the enhancement of the production yield of silicon nanomaterial at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nanomaterial is proposed. The auxiliary nanomaterial is deposited into the porous network causing an increase in the amount of nanomaterial produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  6. Ng HS, Kee PE, Wu YC, Chen L, Wong SYW, Lan JC
    J Biosci Bioeng, 2021 Nov;132(5):513-518.
    PMID: 34479804 DOI: 10.1016/j.jbiosc.2021.07.004
    Microbial astaxanthin with strong antioxidant activity is greatly demanded for diverse applications. Extractive disruption in aqueous biphasic system (ABS) integrates the cells disruption and biomolecules recovery processes in one-step operation, allowing the direct recovery of intracellular biomolecules with biphasic system upon released from cells. In this study, astaxanthin was recovered from recombinant Kluyveromyces marxianus yeast cells via extractive disruption using alcohol/salt ABS. Recombinant K. marxianus yeast is engineered to produce high concentration of free form astaxanthin. Highest partition coefficient (K = 90.02 ± 2.25) and yield (Y = 96.80% ± 0.05) of astaxanthin were obtained with ABS composed of 20% (w/w) 1-propanol and 20% (w/w) sodium citrate of pH 5, 0.5% (w/w) yeast cells loading and additional of 1% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 to improve the migration of astaxanthin to alcohol-rich top phase. The incorporation of 2.5 h of ultrasonication to the biphasic system further enhanced the astaxanthin recovery in ABS. The direct recovery of astaxanthin from recombinant K. marxianus cells was demonstrated with the ultrasonication-assisted alcohol/salt ABS which integrates the extraction and concentration of astaxanthin in a single-step operation.
    Matched MeSH terms: Sodium Chloride*
  7. Ganesan T, Muthudoss P, Voguri RS, Ghosal S, Ann EYC, Kwok J, et al.
    J Pharm Sci, 2022 Dec;111(12):3318-3326.
    PMID: 36028135 DOI: 10.1016/j.xphs.2022.08.022
    Drug-drug cocrystalllization is a novel mechanism for effective pharmacological combination therapy. In this work, we have demonstrated the preparation of a drug-drug cocrystal of a hypertension drug (Telmisartan; TEL) with a hyperuricemia drug (Febuxostat; FEB) in 1:1 molar ratio using a solvent evaporation method for the first time. Generally, a multi-component system may yield either a eutectic, salt, and/or a cocrystal. This study adopted a methodical orthogonal framework to analyze the final solid form. A single crystal X-ray structural investigation revealed the formation of a heterosynthon with carboxylic and benzimidazole groups of FEB and TEL, respectively, in the triclinic P-1 space group. ΔpKa of the heterosynthon is ∼1.5, hence, based on the empirical rules, a salt-cocrystal continuum is hypothesized. Further, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy were employed to corroborate the hydrogen bond formation in the heterosynthon (-N---H-O-), which confirmed the propensity for cocrystal formation. An accelerated stability study and an in vitro biorelevant dissolution study of the cocrystal were performed, which demonstrated that it is physiochemically stable, but it resulted in a slower dissolution rate when compared with plain drugs.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  8. Lai JS, Tan CK, Yusoff K, Cheah SC
    Biotechnol Appl Biochem, 2023 Apr;70(2):603-612.
    PMID: 35830743 DOI: 10.1002/bab.2383
    Excessive salt consumption has been associated with greater risk of hypertension. Therefore, monitoring of dietary sodium consumption should be prioritized. As sodium is mainly excreted through urine, 24-h urine sample can be used to estimate individual sodium intake. Thus, a simple and inexpensive semi-quantitative urinary sodium detection test strip was developed based on the enzymatic reaction between β-galactosidase and chlorophenol red-β-d-galactopyranoside. When tested, color formation was distinguished at 0 M (chartreuse yellow), 0.05 M (sunflower), 0.1-0.15 M (mango tango), and 0.2-0.25 M (persimmon) sodium. Analysis from ImageJ showed a linear result (r2  > 0.9), low SD, and significant increase in magenta difference (p sodium. Test strip can detect 0.03 M sodium at minimum but did not last for >2 days in adverse storage conditions (laboratory conditions, ∼80% relative humidity, 40°C, and direct light exposure) when stored in test strip bottles, and even shorter when exposed to the environment. The presence of urinary potassium, urea, and glucose did not affect test strip performance. Test strip produced comparable results to flame photometry with <15% variation when tested on overnight, random spot, and 24-h urine samples. Overall, the developed test strip can be used to enzymatically semi-quantify 0.05-0.25 M sodium.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary/adverse effects
  9. Faizah M, Kanaheswari Y, Thambidorai C, Zulfiqar M
    Biomed Imaging Interv J, 2011 Jan-Mar;7(1):e7.
    PMID: 21655116 MyJurnal DOI: 10.2349/biij.7.1.e7
    To compare echocontrast cystosonography (ECS) using in-vivo agitated saline with fluoroscopic micturating cystourethrography (MCU) in the detection and grading of vesicoureteric reflux (VUR).
    Matched MeSH terms: Sodium Chloride
  10. Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL
    Bioresour Technol, 2019 Oct;290:121794.
    PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794
    This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  11. Tuan Mohamood NFA, Zainuddin N, Ahmad Ayob M, Tan SW
    Chem Cent J, 2018 Dec 06;12(1):133.
    PMID: 30523481 DOI: 10.1186/s13065-018-0500-8
    In this study, sago starch was modified in order to enhance its physicochemical properties. Carboxymethylation was used to introduce a carboxymethyl group into a starch compound. The carboxymethyl sago starch (CMSS) was used to prepare smart hydrogel by adding acetic acid into the CMSS powder as the crosslinking agent. The degree of substitution of the CMSS obtained was 0.6410. The optimization was based on the gel content and degree of swelling of the hydrogel. In this research, four parameters were studied in order to optimize the formation of CMSS-acid hydrogel. The parameters were; CMSS concentration, acetic acid concentration, reaction time and reaction temperature. From the data analyzed, 76.69% of optimum gel content was obtained with 33.77 g/g of degree of swelling. Other than that, the swelling properties of CMSS-acid hydrogel in different media such as salt solution, different pH of phosphate buffer saline solution as well as acidic and alkaline solution were also investigated. The results showed that the CMSS-acid hydrogel swelled in both alkaline and salt solution, while in acidic or low pH solution, it tended to shrink and deswell. The production of the hydrogel as a smart material offers a lot of auspicious benefits in the future especially related to swelling behaviour and properties of the hydrogel in different types of media.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  12. Mst Kamrun Nahar, Uda Hashim, Zarina Zakaria, Md Fazlul Bari
    Sains Malaysiana, 2017;46:719-724.
    This study examined the influence of pH and salt concentration on the protein solubility of slaughtered and non-slaughtered broiler chicken meat. Three types of salt (NaCl, Na2SO4, and (NH4)2SO4), five different pH levels (5.0, 6.0, 7.0, 8.0 and 9.0) and five salt concentrations (0.4, 0.8, 1.2, 1.6, and 2.0 M) were examined. Each type of salt showed distinctive activities for slaughtered and non-slaughtered meat protein solubility. Soluble protein concentration increased as pH increased (p<0.05) from pH5.0 to 8.0 and decreased from pH8.0 to 9.0. It was also observed that protein solubility increased as the salt concentration increased. Protein solubility significantly increased (p<0.05) in the non-slaughtered meat compared to the slaughtered meat at pH8.0 for Na2SO4 at 1.2 M.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  13. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Aug 1;71(Pt 8):937-40.
    PMID: 26396760 DOI: 10.1107/S2056989015013341
    In the title complex salt, [Au2{(C6H5)2PCH2P(C6H5)2}]Cl2·(CH3)2C=O·H2O, the dication forms an eight-membered {-PCPAu}2 ring with a transannular aurophilic inter-action [Au⋯Au = 2.9743 (2) Å]. The ring approximates a flattened boat conformation, with the two methyl-ene C atoms lying ca 0.58-0.59 Å above the least-squares plane defined by the Au2P4 atoms (r.m.s. deviation = 0.0849 Å). One Cl(-) anion functions as a weak bridge between the Au(I) atoms [Au⋯Cl = 2.9492 (13) and 2.9776 (12) Å]. The second Cl(-) anion forms two (water)O-H⋯Cl hydrogen bonds about a centre of inversion, forming a centrosymmetric eight-membered {⋯HOH⋯Cl}2 supra-molecular square. Globally, the dications and loosely associated Cl(-) anions assemble into layers lying parallel to the ac plane, being connected by C-H⋯Cl,π(phen-yl) inter-actions. The supra-molecular squares and solvent acetone mol-ecules are sandwiched in the inter-layer region, being connected to the layers on either side by C-H⋯Cl,O(acetone) inter-actions.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  14. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1305-1307.
    PMID: 28932461 DOI: 10.1107/S2056989017011252
    In the title mol-ecular salt, C6H10N3O(+)·C7H5O3(-), the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra-molecular O-H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N-H⋯O hydrogen bonds [R2(2)(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N-H⋯O hydrogen bonds into a tetra-meric DDAA array. The tetra-mers are linked by pairs of C-H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  15. Hizam SM, Yamin BM
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):o378.
    PMID: 26090175 DOI: 10.1107/S2056989015008385
    The title salt, C5H11N2S(+)·C7H4ClO2 (-), comprises a 2-amino-3-ethyl-4,5-di-hydro-1,3-thia-zol-3-ium cation in which the five-membered ring adopts an envelope conformation with the methyl-ene C adjacent to the S atom being the flap, and a planar 3-chloro-benzoate anion (r.m.s. deviation for the 10 non-H atoms = 0.021 Å). The most prominent feature of the crystal packing are N-H⋯O hydrogen bonds whereby the two amine H atoms bridge two carboxyl-ate O atoms resulting in the formation of a centrosymmetric 12-membered {⋯HNH⋯OCO}2 synthon involving two cations and two anions. These aggregates are linked by C-H⋯O inter-actions to form a supra-molecular chain along the a-axis direction.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  16. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1851-1856.
    PMID: 30574387 DOI: 10.1107/S2056989018016389
    The asymmetric unit of the centrosymmetric title salt, C17H17F6N2O+·C2Cl3O2-, comprises a single ion-pair. The hy-droxy-O and ammonium-N atoms lie to the same side of the cation, a disposition maintained by a charge-assisted ammonium-N-H⋯O(hy-droxy) hydrogen bond [the Oh-Cm-Cm-Na (h = hy-droxy, m = methine, a = ammonium) torsion angle is 58.90 (19)°]. The piperidin-1-ium group is approximately perpendicular to the quinolinyl residue [Cq-Cm-Cm-Na (q = quinolin-yl) is -178.90 (15)°] so that the cation, to a first approximation, has the shape of the letter L. The most prominent feature of the supra-molecular association in the crystal is the formation of chains along the a-axis direction, being stabilized by charge-assisted hydrogen-bonds. Thus, ammonium-N+-H⋯O-(carboxyl-ate) hydrogen bonds are formed whereby two ammonium cations bridge a pair of carboxyl-ate-O atoms, leading to eight-membered {⋯O⋯HNH}2 synthons. The resulting four-ion aggregates are linked into the supra-molecular chain via charge-assisted hydroxyl-O-H⋯O-(carboxyl-ate) hydrogen bonds. The connections between the chains, leading to a three-dimensional architecture, are of the type C-X⋯π, for X = Cl and F. The analysis of the calculated Hirshfeld surface points to the importance of X⋯H contacts to the surface (X = F, 25.4% and X = Cl, 19.7%) along with a significant contribution from O⋯H hydrogen-bonds (10.2%). Conversely, H⋯H contacts, at 12.4%, make a relatively small contribution to the surface.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  17. Wardell JL, Wardell SMSV, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Jul 01;74(Pt 7):895-900.
    PMID: 30002881 DOI: 10.1107/S2056989018007703
    In the racemic title mol-ecular salt, C17H17F6N2O+·C2ClF2O3- (systematic name: 2-{[2,8-bis-(tri-fluoro-meth-yl)quinolin-4-yl](hy-droxy)meth-yl}piperidin-1-ium chloro-difluoro-acetate), the cation, which is protonated at the piperidine N atom, has the shape of the letter, L, with the piperidin-1-ium group being approximately orthogonal to the quinolinyl residue [the Cq-Cm-Cm-Na (q = quinolinyl; m = methine; a = ammonium) torsion angle is 177.79 (18)°]. An intra-molecular, charge-assisted ammonium-N-H⋯O(hydrox-yl) hydrogen bond ensures the hy-droxy-O and ammonium-N atoms lie to the same side of the mol-ecule [Oh-Cm-Cm-Na (h = hydrox-yl) = -59.7 (2)°]. In the crystal, charge-assisted hydroxyl-O-H⋯O-(carboxyl-ate) and ammonium-N+-H⋯O-(carboxyl-ate) hydrogen bonds generate a supra-molecular chain along [010]; the chain is consolidated by C-H⋯O inter-actions. Links between chains to form supra-molecular layers are of the type C-Cl⋯π(quinolinyl-C6) and the layers thus formed stack along the a-axis direction without directional inter-actions between them. The analysis of the calculated Hirshfeld surface points to the dominance of F⋯H contacts to the surface (40.8%) with significant contributions from F⋯F (10.5%) and C⋯F (7.0%) contacts.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  18. Michael V, You YX, Shahar S, Manaf ZA, Haron H, Shahrir SN, et al.
    PMID: 34360392 DOI: 10.3390/ijerph18158099
    In this review, we have investigated the perceptions, barriers, and enabling factors that were responsible for a dietary salt reduction in the out-of-home sectors. For this purpose, we examined different knowledge databases such as Google Scholar, Ebscohost, MEDLINE (PubMed), Ovid, and Cochrane Library for research articles from September to December 2020. The inclusion criteria for the research articles were that they had to be published in English and had to be a qualitative or quantitative study that was conducted after 2010. These studies also had to report the various enablers, barriers, and perceptions regarding salt reduction in the out-of-home sectors. After implementing the inclusion criteria, we successfully screened a total of 440 studies, out of which 65 articles fulfilled all the criteria. The perceived barriers that hindered salt reduction among the out-of-home sectors included lack of menu and food variabilities, loss of sales due to salt reduction, lack of technical skills for implementing the salt reduction processes for cooking or reformulation, and an absence of environmental and systemic support for reducing the salt concentration. Furthermore, the enablers for salt reduction included the intervention programs, easy accessibility to salt substitutes, salt intake measurement, educational availability, and a gradual reduction in the salt levels. With regards to the behavior or perceptions, the effect of organizational and individual characteristics on their salt intake were reported. The majority of the people were not aware of their salt intake or the effect of salt on their health. These people also believed that low salt food was recognized as tasteless. In conclusion, the enablers, barriers, and perceptions regarding salt reduction in the out-of-home sectors were multifaceted. Therefore, for the implementation of the strategies, policies, and initiatives for addressing the barriers, the policymakers need to encourage a multisectoral collaboration for reducing the salt intake in the population.
    Matched MeSH terms: Sodium Chloride, Dietary*
  19. Tang MS, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, et al.
    Nanotechnology, 2016 Aug 19;27(33):332002.
    PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002
    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links