Abstract

This paper discusses the multilevel approach in constructing a model for estimating hierarchically structured data of students' performance. Multilevel models that take into account variation from the clustering of data in different levels are compared to regression models using least squares method. This study also estimates the contributions of gender and ethnic factors on students' performance. Performance data of866 students in a science faculty in an institution of higher learning is obtained and analyzed. This data is hierarchically structured with two levels, namely students and departments. Analysis findings show different parameter estimates for both models. Also, the multilevel model which incorporates variability from different levels and predictors from higher levels is found to provide a better fit for model explaining students' performance.
[Rencana ini membincangkan pendekatan multitahap dalam pembinaan model penganggaran pencapaian pelajar yang mempunyai struktur data hierarki. Model multitahap yang mengambil kira variasi data yang berpunca dari pengelompokan data pada tahap-tahap yang berbeza dibandingkan dengan model regresi linear yang menggunakan kaedah kuasa dua terkecil. Seterusnya kajian ini menganggar sumbangan faktor jantina dan etnik ke atas pencapaian pelajar. Data pencapaian akademik seramai 866 pelajar fakulti sains di sebuah institusi pengajian tinggi telah diperoleh dan dianalisis. Data pelajar ini berstruktur hierarki dengan dua tahap, iaitu pelajar dan jabatan. Hasil kajian menunjukkan kedua-dua kaedah memberikan penganggaran yang berbeza. Malah, didapati model multitahap yang memasukkan variasi dari tahap-tahap berlainan dan pembolehubah peramal dari tahap yang lebih tinggi memberikan padanan model lebih baik bagi menerangkan pencapaian pelajar].