Affiliations 

  • 1 Orthoptic Unit, Eye Centre, RIPAS Hospital, Jalan Putera Al-Muhtadee Billah, Bandar Seri Begawan, BA 1710, Brunei Darussalam
  • 2 Ophthalmology Section, Department of Medicine, Otago University, Dunedin, New Zealand
  • 3 Department of Ophthalmology, Hospital Selayang, 68100, Batu Caves, Selangor, Darul Ehsan, Malaysia
  • 4 Eccles Institute for Neuroscience, John Curtin School of Medical Research (Bldg 131), Australian National University, Canberra, ACT, 2601, Australia. ted.maddess@anu.edu.au
PMID: 32034583 DOI: 10.1007/s10633-020-09750-7

Abstract

PURPOSE: To compare two forms of perimetry that use large contrast-modulated grating stimuli in terms of: their relative diagnostic power, their independent diagnostic information about glaucoma and their utility for mfVEPs. We evaluated a contrast-threshold mfVEP in normal controls using the same stimuli as one of the tests.

METHODS: We measured psychophysical contrast thresholds in one eye of 16 control subjects and 19 patients aged 67.8 ± 5.65 and 71.9 ± 7.15, respectively, (mean ± SD). Patients ranged in disease severity from suspects to severe glaucoma. We used the 17-region FDT-perimeter C20-threshold program and a custom 9-region test (R9) with similar visual field coverage. The R9 stimuli scaled their spatial frequencies with eccentricity and were modulated at lower temporal frequencies than C20 and thus did not display a clear spatial frequency-doubling (FD) appearance. Based on the overlapping areas of the stimuli, we transformed the C20 results to 9 measures for direct comparison with R9. We also compared mfVEP-based and psychophysical contrast thresholds in 26 younger (26.6 ± 7.3 y, mean ± SD) and 20 older normal control subjects (66.5 ± 7.3 y) control subjects using the R9 stimuli.

RESULTS: The best intraclass correlations between R9/C20 thresholds were for the central and outer regions: 0.82 ± 0.05 (mean ± SD, p ≤ 0.0001). The areas under receiver operator characteristic plots for C20 and R9 were as high as 0.99 ± 0.012 (mean ± SE). Canonical correlation analysis (CCA) showed significant correlation (r = 0.638, p = 0.029) with 1 dimension of the C20 and R9 data, suggesting that the lower and higher temporal frequency tests probed the same neural mechanism(s). Low signal quality made the contrast-threshold mfVEPs non-viable. The resulting mfVEP thresholds were limited by noise to artificially high contrasts, which unlike the psychophysical versions, were not correlated with age.

CONCLUSION: The lower temporal frequency R9 stimuli had similar diagnostic power to the FDT-C20 stimuli. CCA indicated the both stimuli drove similar neural mechanisms, possibly suggesting no advantage of FD stimuli for mfVEPs. Given that the contrast-threshold mfVEPs were non-viable, we used the present and published results to make recommendations for future mfVEP tests.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.