Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Nasim I, Ghani N, Nawaz R, Irfan A, Arshad M, Nasim M, et al.
    ACS Omega, 2024 Feb 13;9(6):6731-6740.
    PMID: 38371818 DOI: 10.1021/acsomega.3c07919
    Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
  2. Adzhri R, Md Arshad MK, Gopinath SC, Ruslinda AR, Fathil MF, Ayub RM, et al.
    Anal Chim Acta, 2016 Apr 21;917:1-18.
    PMID: 27026595 DOI: 10.1016/j.aca.2016.02.042
    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications.
  3. Fathil MF, Md Arshad MK, Ruslinda AR, Nuzaihan M N M, Gopinath SC, Adzhri R, et al.
    Anal Chim Acta, 2016 Sep 07;935:30-43.
    PMID: 27543013 DOI: 10.1016/j.aca.2016.06.012
    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond.
  4. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK
    Appl Microbiol Biotechnol, 2017 Nov;101(22):8077-8088.
    PMID: 28942548 DOI: 10.1007/s00253-017-8493-0
    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
  5. Gopinath SC, Lakshmipriya T, Chen Y, Arshad MK, Kerishnan JP, Ruslinda AR, et al.
    Appl Microbiol Biotechnol, 2016 Aug;100(16):6955-69.
    PMID: 27350620 DOI: 10.1007/s00253-016-7686-2
    Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
  6. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
  7. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al.
    Biomed Res Int, 2017;2017:1272193.
    PMID: 28280725 DOI: 10.1155/2017/1272193
    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
  8. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al.
    Bioorg Chem, 2016 Jun;66:111-6.
    PMID: 27140727 DOI: 10.1016/j.bioorg.2016.04.005
    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.
  9. Fatin MF, Ruslinda AR, Arshad MK, Tee KK, Ayub RM, Hashim U, et al.
    Biosens Bioelectron, 2016 Apr 15;78:358-66.
    PMID: 26655174 DOI: 10.1016/j.bios.2015.11.067
    Human immunodeficiency virus (HIV) has infected almost 35 million people worldwide. Various tests have been developed to detect the presence of HIV during the early stages of the disease in order to reduce the risk of transmission to other humans. The HIV-1 Tat protein is one of the proteins present in HIV that are released abundantly approximately 2-4 weeks after infection. In this review, we have outlined various strategies for detecting the Tat protein, which helps transcribe the virus and enhances replication. Detection strategies presented include immunoassays, biosensors and gene expression, which utilize antibodies or aptamers as common probes to sense the presence of Tat. Alternatively, measuring the levels of gene transcription is a direct method of analysing the HIV gene to confirm the presence of Tat. By detection of the Tat protein, virus transmission can be detected in high-risk individuals in the early stages of the disease to reduce the risk of an HIV pandemic.
  10. Nuzaihan M N M, Hashim U, Md Arshad MK, Kasjoo SR, Rahman SF, Ruslinda AR, et al.
    Biosens Bioelectron, 2016 Sep 15;83:106-14.
    PMID: 27107147 DOI: 10.1016/j.bios.2016.04.033
    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.
  11. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, et al.
    Biosens Bioelectron, 2015 Aug 15;70:209-20.
    PMID: 25841117 DOI: 10.1016/j.bios.2015.03.037
    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. Data from World Health Organization (WHO) accounted 30% of global death annually and expected more than 23 million die annually by 2030. This fatal effects trigger the need of appropriate biomarkers for early diagnosis, thus countermeasure can be taken. At the moment, the most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as 'gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Several ways of diagnostics have been formulated, which include enzyme-linked immunosorbent assay, chemiluminescent, fluoro-immunoassays, electrical detections, surface plasmon resonance, and colorimetric protein assay. This review represents and elucidates the strategies, methods and detection levels involved in these diagnostics on cardiac superior biomarkers. The advancement, sensitivity, and limitations of each method are also discussed. In addition, it concludes with a discussion on the point-of care (POC) assay for a fast, accurate and ability of handling small sample measurement of cardiac biomarker.
  12. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2019 Sep 15;141:111434.
    PMID: 31238281 DOI: 10.1016/j.bios.2019.111434
    The pragmatic outcome of a lung cancer diagnosis is closely interrelated in reducing the number of fatal death caused by the world's top cancerous disease. Regardless of the advancement made in understanding lung tumor, and its multimodal treatment, in general the percentage of survival remain low. Late diagnosis of a cancerous cell in patients is the major hurdle for the above circumstances. In the new era of a lung cancer diagnosis with low cost, portable and non-invasive clinical sampling, nanotechnology is at its inflection point where current researches focus on the implementation of biosensor conjugated nanomaterials for the generation of the ideal sensing. The present review encloses the superiority of nanomaterials from zero to three-dimensional nanostructures in its discrete and nanocomposites nanotopography on sensing lung cancer biomarkers. Recent researches conducted on definitive nanomaterials and nanocomposites at multiple dimension with distinctive physiochemical property were focused to subside the cases associated with lung cancer through the development of novel biosensors. The hurdles encountered in the recent research and future preference with prognostic clinical lung cancer diagnosis using multidimensional nanomaterials and its composites are presented.
  13. Ibau C, Md Arshad MK, Gopinath SCB, Nuzaihan M N M, M Fathil MF, Estrela P
    Biosens Bioelectron, 2019 Jul 01;136:118-127.
    PMID: 31054519 DOI: 10.1016/j.bios.2019.04.048
    A simple, single-masked gold interdigitated triple-microelectrodes biosensor is presented by taking the advantage of an effective self-assembled monolayer (SAM) using an amino-silanization technique for the early detection of a prostate cancer's biomarker, the prostate-specific antigen (PSA). Unlike most interdigitated electrode biosensors, biorecognition happens in between the interdigitated electrodes, which enhances the sensitivity and limit of detection of the sensor. Using the Faradaic mode electrochemical impedance spectroscopy (EIS) technique to quantify the PSA antigen, the developed sensing platform demonstrates a logarithmic detection of PSA ranging from 0.5 ng/ml to 5000 ng/ml, an estimated LOD down to 0.51 ng/ml in the serum, and a good sensor's reproducibility. The sensor's detection range covers the clinical threshold value at 4 ng/ml and the crucial diagnosis 'grey zone' of 4-10 ng/ml of PSA in serum for an accurate cancer diagnosis. The selectivity test revealed an excellent discrimination of other competing proteins, with a recorded detection signals at 5 ng/ml PSA as high as 7-fold increase versus the human serum albumin (HSA) and 8-fold increase versus the human glandular kallikrein 2 (hK2). The stability test showed an acceptable stability of the aptasensor recorded at six (6) days before the detection signal started degrading below 10% of the peak detection value. The developed sensing scheme is proven to exhibit a great potential as a portable prostate cancer biosensor, also as a universal platform for bio-molecular sensing with the versatility to implement nanoparticles and other surface chemistry for various applications.
  14. Ibau C, Md Arshad MK, Gopinath SCB
    Biosens Bioelectron, 2017 Dec 15;98:267-284.
    PMID: 28689113 DOI: 10.1016/j.bios.2017.06.049
    Early cancer diagnosis remains the holy-grail in the battle against cancers progression. Tainted with debates and medical challenges, current therapeutic approaches for prostate cancer (PCa) lack early preventive measures, rapid diagnostic capabilities, risk factors identification, and portability, i.e. the inherent attributes offered by the label-free biosensing devices. Electronic assisted immunosensing systems inherit the high sensitivity and specificity properties due to the predilection of the antigen-antibody affinity. Bioelectronic immunosensor for PCa has attracted much attentions among the researchers due to its high-performance, easy to prepare, rapid feedback, and possibility for miniaturization. This review explores the current advances on bioelectronic immunosensors for the detection of PCa biomarker revealed in the past decade. The research milestones and current trends of the immunosensors are reported to project the future visions in order to propel their "lab-to-market" realization.
  15. Taniselass S, Arshad MKM, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:276-292.
    PMID: 30771717 DOI: 10.1016/j.bios.2019.01.047
    Graphene is a 2-dimensional nanomaterial with an atomic thickness has attracted a strong scientific interest owing to their remarkable optical, electronic, thermal, mechanical and electrochemical properties. Graphene-based materials particularly graphene oxide and reduced graphene oxide are widely utilized in various applications ranging from food industry, environmental monitoring and biomedical fields as well as in the development of various types of biosensing devices. The richness in oxygen functional groups in the materials serves as a catalysis for the development of biosensors/electrochemical biosensors which promotes for an attachment of biological recognition elements, surface functionalization and compatible with micro- and nano- bio-environment. In this review, the graphene-based materials application in electrochemical biosensors based on recent advancement (e.g; the surface modification and analytical performances) and the utilization of such biosensors to monitor the noncommunicable diseases are presented. The detection performances of the graphene-based electrochemical biosensors are in the range of ng/mL and have reached up to fg/mL in detecting the targets of NCDs with higher selectivity, sensitivity and stability with good reproducibility attributes. We have discussed the advances while addressing the very specific biomarkers for the NCDs detection. Challenges and possible future research directions for the NCDs detection based on graphene nanocomposite with other 2D nanomaterials are outlined.
  16. Letchumanan I, Gopinath SCB, Md Arshad MK, Anbu P, Lakshmipriya T
    Biosens Bioelectron, 2019 Apr 15;131:128-135.
    PMID: 30826647 DOI: 10.1016/j.bios.2019.02.006
    This article is clearly presenting the development of a biosensor for human factor IX (FIX) to diagnose the blood clotting deficiency, a so-called 'Royal disease' using an interdigitated electrode (IDE) with the zinc oxide surface modification. Gold nano-urchins (GNUs) with 60 nm in diameter was integrated into a streptavidin-biotinylated aptamer strategy to enhance the active surface area. Two different comparative studies have been done to validate the system to be practiced in the current work holds with a higher capability for the high-performance sense. Whereby, the presence and absence of GNUs in the aptasensing system for FIX interaction were investigated using the amperometric measurement, using a linear sweep voltage of 0-2 V at 0.01 V step voltage. The detection limit was 6 pM based on 3σ calculation when GNUs integrated aptamer assay was utilized for FIX detection, which shows 8 folds sensitivity enhancement comparing the condition in the absence of GNU and 50 folds higher than sensitive radio-isotope and surface plasmon resonance assays. Albeit, the surface and molecular characterizations were well demonstrated by scanning electron microscopy, atomic force microscopy, 3D nano-profilometry and further supports were rendered by UV-Vis spectroscopy and Enzyme-linked apta-sorbent assay (ELASA). Furthermore, the spiking experiment was done by FIX-spikes in human blood serum in order to demonstrate the stability with a higher non-fouling.
  17. Letchumanan I, Md Arshad MK, Balakrishnan SR, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:40-47.
    PMID: 30716591 DOI: 10.1016/j.bios.2019.01.042
    This paper primarily demonstrates the approach to enhance the sensing performance on antigen C-reactive protein (CRP) and anti-CRP antibody binding event. A nanogapped electrode structure with the gap of ~100 nm was modified by the anti-CRP antibody (Probe) to capture the available CRP. In order to increase the amount of antigen to be captured, a gold nanorod with 119 nm in length and 25 nm in width was integrated, to increase the surface area. A comparative study between the existence and non-existence of gold nanorod utilization was evaluated. Analysis of the sensing surface was well-supported by atomic force microscopy, scanning electron microscopy, 3D nano-profilometry, high-power microscopy and UV-Vis spectroscopy. The dielectric voltammetric analysis was carried out from 0 V to 2 V. The sensitivity was calculated based on 3σ and attained as low as 1 pM, which is tremendously low compared to real CRP concentration (119 nM) in human blood serum. The gold nanorod conjugation with antibody has enhanced the sensitivity to 100 folds (10 fM). The specificity of the CRP detection by the proposed strategy was anchored by ELISA and failure in the detection of human blood clotting factor IX by voltammetry. Despite, CRP antigen was further detected in human serum by spiking CRP to run-through the detection with the physiologically relevant samples.
  18. Dalila R N, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM
    Biosens Bioelectron, 2019 May 01;132:248-264.
    PMID: 30878725 DOI: 10.1016/j.bios.2019.03.005
    Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
  19. Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2022 Feb 01;197:113735.
    PMID: 34736114 DOI: 10.1016/j.bios.2021.113735
    In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 μm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.
  20. Arshad M, Azad A, Chan PYK, Vigneswara V, Feldinger K, Nafi SNM, et al.
    Br J Cancer, 2024 Apr 10.
    PMID: 38600326 DOI: 10.1038/s41416-024-02665-z
    BACKGROUND: Previous studies have suggested that patients with HER2-low breast cancers do not benefit from trastuzumab treatment although the reasons remain unclear.

    METHODS: We investigated the effect of trastuzumab monotherapy and its combination with different HER2 targeting treatments in a panel of breast cancer cell lines and patient-derived organoids (PDOs) using biochemical methods and cell viability assays.

    RESULTS: Compared to sensitive HER2 over-expressing (IHC3 + ) breast cancer cells, increasing doses of trastuzumab could not achieve IC50 in MDA-MB-361 (IHC 2 + FISH + ) and MDA-MB-453 (IHC 2 + FISH-) cells which showed an intermediate response to trastuzumab. Trastuzumab treatment induced upregulation of HER ligand release, resulting in the activation of HER receptors in these cells, which could account for their trastuzumab insensitivity. Adding a dual ADAM10/17 inhibitor to inhibit the shedding of HER ligands in combination with trastuzumab only showed a modest decrease in the cell viability of HER2-low breast cancer cells and PDOs. However, the panHER inhibitor neratinib was an effective monotherapy in HER2-low breast cancer cells and PDOs, and showed additive effects when combined with trastuzumab.

    CONCLUSION: This study demonstrates that neratinib in combination with trastuzumab may be effective in a subset of HER2-low breast cancers although further validation is required in a larger panel of PDOs and in future clinical studies.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links