Displaying publications 1 - 20 of 215 in total

Abstract:
Sort:
  1. Bradley DJ
    Parassitologia, 1994 Aug;36(1-2):137-47.
    PMID: 7898951
    Following the discovery of mosquito transmission of malaria, the theory and practice of malaria control by general and selective removal of specific vector populations resulted particularly from Malcolm Watson's empirical work in peninsular Malaysia, first in the urban and peri-urban areas of Klang and Port Swettenham and subsequently in the rural rubber plantations, and from the work of N.H. Swellengrebel in nearby Indonesia on the taxonomy, ecology and control of anophelines. They developed the concept of species sanitation: the selective modification of the environment to render a particular anopheline of no importance as a vector in a particular situation. The lack of progress along these lines in India at that time is contrasted with that in south-east Asia. The extension of species sanitation and related concepts to other geographical areas and to other vector-borne disease situations is outlined.
  2. BURTON-BRADLEY BG
    Med J Malaya, 1959 Jun;13:269-75.
    PMID: 13806345
  3. Burton-Bradley BG
    Med J Aust, 1968 Feb 17;1(7):252-6.
    PMID: 5642836
  4. Bradley DA, Chong CS
    Int J Rad Appl Instrum A, 1991;42(8):767-70.
    PMID: 1666633
    New, detailed measurements have been made of the photon spectrum of the radionuclide 241Am. Observations, recorded for a 95% confidence level over local background, provide affirmation of a number of lines previously considered to be of equivocal existence. A number of hitherto unreported emissions are similarly observed. Peak areas, expressed as a percentage of that for the 59.54 keV emission, have been ascribed to all lines of the detailed spectrum. This leads to an estimated increase in the value of exposure calculated from the measured fluence spectrum, relative to that from the 59.54 keV line, of (3.1 +/- 0.8)%, taking into account all emissions beyond the predominating 59.54 keV gamma-ray emission.
  5. Bradley DA, Dahlan KZ, Roy SC
    Appl Radiat Isot, 2000 Oct;53(4-5):921-8.
    PMID: 11003542
    High-energy electron (2.0 MV) and gamma irradiation (60Co) has been used to modify polymeric silicone fluids of initial viscosities in the range, 90-700 cSt. Doses of electron and gamma radiation were delivered at rates of 0.246 kGy s(-1) and 15 kGy h(-1), respectively, exposure times being adjusted to ensure energy deposition in the range 30-360 kGy. Measurements were made using a differential viscometer based on a Bose Institute design. In line with expectation, samples of greater initial molecular weight (and hence greater viscosity), were observed to be more susceptible to radiation induced cross-linking than those of lower molecular weight. The role of dose rate and oxygen diffusion in determining the extent of change is discussed.
  6. Harun S, Baker A, Bradley C, Pinay G
    Environ Sci Process Impacts, 2016 Jan;18(1):137-50.
    PMID: 26666759 DOI: 10.1039/c5em00462d
    Dissolved organic matter (DOM) was characterised in water samples sampled in the Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 and May 2010. This study aims at: (i) distinguishing between the quality of DOM in waters draining palm oil plantations (OP), secondary forests (SF) and coastal swamps (CS) and, (ii) identifying the seasonal variability of DOM quantity and quality. Surface waters were sampled during fieldwork campaigns that spanned the wet and dry seasons. DOM was characterised optically by using the fluorescence Excitation Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to assess the DOM composition from EEM spectra and five terrestrial derived components were identified: (C1, C2, C3, C4 and C5). Components C1 and C4 contributed the most to DOM fluorescence in all study areas during both the wet and dry seasons. The results suggest that component C4 could be a significant (and common) PARAFAC signal found in similar catchments. Peak M (C2 and C3) was dominant in all samples collected during wet and dry seasons, which could be anthropogenic in origin given the active land use change in the study area. In conclusion, there were significant seasonal and spatial variations in DOM which demonstrated the effects of land use cover and precipitation amounts in the Kinabatangan catchment.
  7. Bradley DA, Wong CS, Ng KH
    Appl Radiat Isot, 2000 9 26;53(4-5):691-7.
    PMID: 11003508
    For broad-beam soft X-ray sources, assessment of the quality of image produced by such units is made complex by the low penetration capabilities of the radiation. In the present study we have tested the utility of several types of test tool, some of which have been fabricated by us, as part of an effort to evaluate several key image defining parameters. These include the film characteristic, focal-spot size, image resolution and detail detectability. The two sources of X-rays used in present studies were the University of Malaya flash X-ray device (UMFX1) and a more conventional soft X-ray tube (Softex, Tokyo), the latter operating at peak accelerating potentials of 20 kVp. We have established, for thin objects, that both systems produce images of comparable quality and, in particular, objects can be resolved down to better than 45 microm.
  8. Ng KH, Looi LM, Bradley DA
    Br J Radiol, 1996 Apr;69(820):326-34.
    PMID: 8665132
    X-ray microradiography of surgically excised breast specimens offers the possibility of morphological characterization of calcifications. When combined with digital imaging techniques there exists added potential for obtaining valuable basic quantitative morphometric information regarding differences between microcalcifications in tissues exhibiting evidence of fibrocystic change, benign and malignant tumours. A total of 157 excised breast specimens from 84 patients were microradiographed using a Softex Super Soft X-ray unit and Kodak AA high resolution industrial film. A Quantimet 570C image analysis system was used to digitize and analyse the microradiographs. Of the 157 microradiographs, 51 (from 30 patients) revealed microcalcification clusters. The existence of significant differences between the three identified categories of tissue were indicated by clustering parameters. These included the number of particles per cluster, area of clusters, maximum distance to nearest neighbour, and geometric mean distance to nearest neighbour. The distribution pattern index (DPI), another of the clustering parameters used in this study, has been observed to be a particularly powerful discriminator. The value for fibrocystic change was found to be significantly smaller (0.514) than that for benign tumour (0.796) whilst that for benign tumour was observed to be significantly larger than that for malignant tumour (0.604) at a p-value of less than 0.05 (Kruskal-Wallis one-way analysis of variance).
  9. Yusop RM, Unciti-Broceta A, Bradley M
    Bioorg Med Chem Lett, 2012 Sep 15;22(18):5780-3.
    PMID: 22901897 DOI: 10.1016/j.bmcl.2012.07.101
    Variation at the 3' position of fluorescein via Suzuki-Miyaura cross-coupling with aryl and heteroaryl moieties gave a family of anthofluoresceins whose spectroscopic properties were studied. The 1-methylindole derivative gave the highest quantum yield and was observed to behave as a molecular rotor, displaying marked variations in fluorescent intensities with viscosity and offering possible application in cellular sensing and fluorescent polarisation assays.
  10. Bradley DA, Ng KH, Aziz YB
    Int J Rad Appl Instrum A, 1988;39(5):439-40.
    PMID: 2840420
    The utility of a phantom material, based on SMR(L) [Standard Malaysian Rubber] grade natural rubber and a formulation used for the proprietary rubber phantom-material, Temex, has been examined for the 1-MeV photon-Measurement has also been performed with 60-keV photons using the radionuclide 241Am. At photon-therapy energy levels the measured response, when compared with tabulated central-axis percentage depth doses for the defined measuring conditions, produces everywhere (in the range 1-19 cm depth) better than 2% deviation. The favourable measured response characteristics combined with the ease of processing and casting the phantom material provide the basis for useful radiotherapy machine calibration and anthropomorphic dosimetry measurements. The measured mass-attenuation coefficient, at 60keV, of 0.204 cm2 g-1 (+/- 3%) is in close agreement with tabulated values for water (0.2055 cm2 g-1).
  11. Alyahyawi A, Jupp T, Alkhorayef M, Bradley DA
    Appl Radiat Isot, 2018 Aug;138:45-49.
    PMID: 28780202 DOI: 10.1016/j.apradiso.2017.07.011
    In the modern clinical practice of diagnostic radiology there is a growing demand for radiation dosimetry, it also being recognized that with increasing use of X-ray examinations additional population dose will result, accompanied by an additional albeit low potential for genetic consequences. At the doses typical of diagnostic radiology there is also a low statistical risk for cancer induction; in adhering to best practice, to be also implied is a low but non-negligible potential for deterministic sensitive organ responses, including in regard to the skin and eyes. Risk reduction is important, in line with the principle of ALARP, both in regard to staff and patients alike; for the latter modern practice is usually guided by Dose Reference Levels (DRL) while for the former and members of the public, legislated controls (supported by safe working practices) pertain. As such, effective, reliable and accurate means of dosimetry are required in support of these actions. Recent studies have shown that Ge-doped-silica glass fibres offer several advantages over the well-established phosphor-based TL dosimeters (TLD), including excellent sensitivity at diagnostic doses as demonstrated herein, low fading, good reproducibility and re-usability, as well as representing a water impervious, robust dosimetric system. In addition, these silica-based fibres show good linearity over a wide dynamic range of dose and dose-rate and are directionally independent. In the present study, we investigate tailor made doped-silica glass thermoluminescence (TL) for applications in medical diagnostic imaging dosimetry. The aim is to develop a dosimeter of sensitivity greater than that of the commonly used LiF (Mg,Ti) phosphor. We examine the ability of such doped glass media to detect the typically low levels of radiation in diagnostic applications (from fractions of a mGy through to several mGy or more), including, mammography and dental radiology, use being made of x-ray tubes located at the Royal Surrey County Hospital. We further examine dose-linearity, energy response and fading.
  12. Lim LK, Yap SL, Bradley DA
    PLoS One, 2018;13(1):e0188009.
    PMID: 29309425 DOI: 10.1371/journal.pone.0188009
    The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.
  13. Entezam A, Fielding A, Bradley D, Fontanarosa D
    PLoS One, 2023;18(2):e0280765.
    PMID: 36730280 DOI: 10.1371/journal.pone.0280765
    Computed tomography (CT) derived Monte Carlo (MC) phantoms allow dose determination within small animal models that is not feasible with in-vivo dosimetry. The aim of this study was to develop a CT-derived MC phantom generated from a mouse with a xenograft tumour that could then be used to calculate both the dose heterogeneity in the tumour volume and out of field scattered dose for pre-clinical small animal irradiation experiments. A BEAMnrc Monte-Carlo model has been built of our irradiation system that comprises a lead collimator with a 1 cm diameter aperture fitted to a Cs-137 gamma irradiator. The MC model of the irradiation system was validated by comparing the calculated dose results with dosimetric film measurement in a polymethyl methacrylate (PMMA) phantom using a 1D gamma-index analysis. Dose distributions in the MC mouse phantom were calculated and visualized on the CT-image data. Dose volume histograms (DVHs) were generated for the tumour and organs at risk (OARs). The effect of the xenographic tumour volume on the scattered out of field dose was also investigated. The defined gamma index analysis criteria were met, indicating that our MC simulation is a valid model for MC mouse phantom dose calculations. MC dose calculations showed a maximum out of field dose to the mouse of 7% of Dmax. Absorbed dose to the tumour varies in the range 60%-100% of Dmax. DVH analysis demonstrated that tumour received an inhomogeneous dose of 12 Gy-20 Gy (for 20 Gy prescribed dose) while out of field doses to all OARs were minimized (1.29 Gy-1.38 Gy). Variation of the xenographic tumour volume exhibited no significant effect on the out of field scattered dose to OARs. The CT derived MC mouse model presented here is a useful tool for tumour dose verifications as well as investigating the doses to normal tissue (in out of field) for preclinical radiobiological research.
  14. Karim M, Hashim S, Sabarudin A, Bradley D, Bahruddin N
    Sains Malaysiana, 2016;45:567-573.
    In this study, radiation doses from CT scan procedures and its related risks to the patients from five hospitals in Johor State, Malaysia were analyzed. The survey was conducted in a two-month period encompassing data for 460 patients with the number for each hospital being set at 32, 30 and 30 samples for CT brain, CT thorax and CT abdomen, respectively. The results indicated that the CTDIw, DLP and effective dose values ranged from 7.0±1.3 to 67.7±3.4 mGy, 300.2±135.4 to 1174.2±79.9 mGy.cm and 1.5±0.2 to 11.7±6.65 mSv, respectively. The organ doses were calculated using CT EXPO software (Ver. 2.3.1, Germany) and were found to vary within the hospitals and the type of the CT examinations. Effective cancer risks per procedure were calculated by multiplying organ dose with the nominal cancer risk that was adapted from International Commission on Radiological Protection (ICRP) Publication 103. The values ranged from 0 to 1449 cancer cases per one million procedures for these three routine examinations. This present work showed that the CT systems can impart high radiation doses and increase of radiation risk to patients if optimization protocols are ignored.
  15. Ng CJ, Mathers N, Bradley A, Colwell B
    BMC Health Serv Res, 2014 Oct 24;14:503.
    PMID: 25341370 DOI: 10.1186/s12913-014-0503-7
    BACKGROUND: There is a lack of practical research frameworks to guide the development of patient decision aids [PtDAs]. This paper described how a PtDA was developed using the International Patient Decision Aids (IPDAS) guideline and UK Medical Research Council (UKMRC) frameworks to support patients when making treatment decisions in type 2 diabetes mellitus.

    METHODS: This study used mixed methods to develop a PtDA for use in a UK general practice setting. A 10-member expert panel was convened to guide development and patients and clinicians were also interviewed individually using semi-structured interview guides to identify their decisional needs. Current literature was reviewed systematically to determine the best available evidence. The Ottawa Decision Support Framework was used to guide the presentation of the information and value clarification exercise. An iterative draft-review-revise process by the research team and review panel was conducted until the PtDA reached content and format 'saturation'. The PtDA was then pilot-tested by users in actual consultations to assess its acceptability and feasibility. The IPDAS and UKMRC frameworks were used throughout to inform the development process.

    RESULTS: The PANDAs PtDA was developed systematically and iteratively. Patients and clinicians highlighted the needs for information, decisional, emotional and social support, which were incorporated into the PtDA. The literature review identified gaps in high quality evidence and variations in patient outcome reporting. The PtDA comprised five components: background of the treatment options; pros and cons of each treatment option; value clarification exercise; support needs; and readiness to decide.

    CONCLUSIONS: This study has demonstrated the feasibility of combining the IPDAS and the UKMRC frameworks for the development and evaluation of a PtDA. Future studies should test this model for developing PtDAs across different decisions and healthcare contexts.

  16. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
  17. Ikonomopoulou MP, Olszowy H, Hodge M, Bradley AJ
    PMID: 19247670 DOI: 10.1007/s00360-009-0347-3
    In this study on green turtles, Chelonia mydas, from Peninsular Malaysia, the effect of selected environmental toxicants was examined in vitro. Emphasis was placed on purported hormone-mimicking chemicals such as dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, dieldrin, lead, zinc and copper. Five concentrations were used: high (1 mg/L), medium (10(-1) mg/L), low (10(-2) mg/L), very low (10(-6) mg/L) and control (diluted carrier solvent but no toxicants). The results suggest that environmental pesticides and heavy metals may significantly alter the binding of steroids [i.e. testosterone (T) and oestradiol] to the plasma proteins in vitro. Competition studies showed that only Cu competed for binding sites with testosterone in the plasma collected from nesting C. mydas. Dieldrin and all heavy metals competed with oestradiol for binding sites. Furthermore, testosterone binding affinity was affected at various DDT concentrations and was hypothesised that DDT in vivo may act to inhibit steroid-protein interactions in nesting C. mydas. Although the precise molecular mechanism is yet to be described, DDT could have an effect upon the protein conformation thus affecting T binding (e.g. the T binding site on the steroid hormone binding protein molecule).
  18. Ramli AT, Bradley DA, Hashim S, Wagiran H
    Appl Radiat Isot, 2009 Mar;67(3):428-32.
    PMID: 18693114 DOI: 10.1016/j.apradiso.2008.06.034
    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links