Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Abushammala MF, Basri NE, Basri H, Kadhum AA, El-Shafie AH
    Environ Monit Assess, 2013 Jun;185(6):4919-32.
    PMID: 23054277 DOI: 10.1007/s10661-012-2913-5
    Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.
  2. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
  3. Al-Alwani MA, Mohamad AB, Kadhum AA, Ludin NA
    PMID: 25483560 DOI: 10.1016/j.saa.2014.11.018
    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
  4. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    Molecules, 2014 Dec 29;20(1):366-83.
    PMID: 25551187 DOI: 10.3390/molecules20010366
    The anticorrosion ability of a synthesized coumarin, namely 2-(coumarin-4-yloxy)acetohydrazide (EFCI), for mild steel (MS) in 1 M hydrochloric acid solution has been studied using a weight loss method. The effect of temperature on the corrosion rate was investigated, and some thermodynamic parameters were calculated. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The IE value reaches 94.7% at the highest used concentration of the new eco-friendly inhibitor. The adsorption of inhibitor on MS surface was found to obey a Langmuir adsorption isotherm. Scanning electron microscopy (SEM) was performed on inhibited and uninhibited mild steel samples to characterize the surface. The Density Function theory (DFT) was employed for quantum-chemical calculations such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy) and μ (dipole moment), and the obtained results were found to be consistent with the experimental findings. The synthesized inhibitor was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic studies.
  5. Al-Amiery AA, Kadhum AA, Obayes HR, Mohamad AB
    Bioinorg Chem Appl, 2013;2013:354982.
    PMID: 24170994 DOI: 10.1155/2013/354982
    The novel curcumin derivative (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (5-chlorocurcumin) was prepared from natural curcumin. The newly synthesised compound was characterised by spectral studies (IR, 1H NMR, and 13C NMR). The free radical scavenging activity of 5-chlorocurcumin has been determined by measuring interaction with the stable free radical DPPH, and 5-chlorocurcumin has shown encouraging antioxidant activities. Theory calculations of the synthesised 5-chlorocurcumin were performed using molecular structures with optimised geometries. Molecular orbital calculations provided a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
  6. Al-Amiery AA, Kadhum AA, Mohamad AB
    Bioinorg Chem Appl, 2012;2012:795812.
    PMID: 22400016 DOI: 10.1155/2012/795812
    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2''-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
  7. Al-Amiery AA, Musa AY, Kadhum AA, Mohamad AB
    Molecules, 2011 Aug 10;16(8):6833-43.
    PMID: 21832973 DOI: 10.3390/molecules16086833
    New coumarin derivatives, namely 7-[(5-amino-1,3,4-thiadiazol-2-yl)methoxy]-2H-chromen-2-one, 5-[(2-oxo-2H-chromen-7-yloxy)methyl]-1,3,4-thiadiazol-2(3H)-one, 2-[2-(2-oxo-2H-chromen-7-yloxy)acetyl]-N-phenylhydrazinecarbothioamide, 7-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)methoxy]-2H-chromen-2-one and 7-[(5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methoxy]-2H-chromen-2-one were prepared starting from the natural compound umbelliferone. The newly synthesized compounds were characterized by elemental analysis and spectral studies (IR, ¹H-NMR and ¹³C-NMR).
  8. Al-Amiery AA, Binti Kassim FA, Kadhum AA, Mohamad AB
    Sci Rep, 2016 Jan 22;6:19890.
    PMID: 26795066 DOI: 10.1038/srep19890
    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10(-3) M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir's adsorption isotherm. The effect of te perature on corrosion behavior in the presence of 5 × 10(-3) M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.
  9. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    PLoS One, 2015;10(7):e0132175.
    PMID: 26147722 DOI: 10.1371/journal.pone.0132175
    New derivatives of 7-hydroxy-4-methylcoumarin were synthesized using a chemical method and a microwave-assisted method to compare the feasibility, reaction times, and yields of the product. The newly synthesized coumarins were characterized by different spectroscopic techniques (FT-IR and NMR) and micro-elemental analysis (CHNS). In vitro antioxidant activities of these compounds were evaluated against hydrogen peroxide and were compared with standard natural antioxidant, vitamin C. Our results reveal that these compounds exhibit excellent radical scavenging activities.
  10. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    Sci Rep, 2015;5:11825.
    PMID: 26134661 DOI: 10.1038/srep11825
    The rational design of 4-hydroxycoumarins with tailor-made antioxidant activities is required nowadays due to the wide variety of pharmacologically significant, structurally interesting of coumarins and researcher orientation toward green chemistry and natural products. A simple and unique coumarins have been achieved by reaction of 4-hydroxycoumarin with aromatic aldehyde accompanied with the creation of a macromolecules have 2-aminothiazolidin-4-one. The molecular structures of the compounds were characterized by the Fourier transformation infrared and Nuclear magnetic resonance spectroscopies, in addition to CHN analysis. The scavenging abilities of new compounds against stable DPPH radical (DPPH•) and hydrogen peroxide were done and the results show that the compounds exhibited high antioxidant activates.
  11. Al-Amiery AA, Kadhum AA, Mohamad AB
    Molecules, 2012 May 14;17(5):5713-23.
    PMID: 22628043 DOI: 10.3390/molecules17055713
    Newly synthesized coumarins 4-((5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)-methoxy)-2H-chromen-2-one and 4-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)-methoxy)-2H-chromen-2-one were tested against selected types of fungi and showed significant activities. DFT calculations of the synthesized coumarins were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
  12. Al-Azawi KF, Al-Baghdadi SB, Mohamed AZ, Al-Amiery AA, Abed TK, Mohammed SA, et al.
    Chem Cent J, 2016;10:23.
    PMID: 27134648 DOI: 10.1186/s13065-016-0170-3
    BACKGROUND: The acid corrosion inhibition process of mild steel in 1 M HCl by 4-[(2-amino-1, 3, 4-thiadiazol-5-yl)methoxy]coumarin (ATC), has been investigated using weight loss technique and scanning electron microscopy (SEM). ATC was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared and nuclear magnetic resonance spectroscopy).

    FINDINGS: The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The adsorption equilibrium constant (K) and standard free energy of adsorption (ΔGads) were calculated. Quantum chemical parameters such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in both the EHOMO and μ values but with a decrease in the ELUMO value.

    CONCLUSIONS: Our research show that the synthesized macromolecule represents an excellent inhibitor for materials in acidic solutions. The efficiency of this macromolecule had maximum inhibition efficiency up to 96 % at 0.5 mM and diminishes with a higher temperature degree, which is revealing of chemical adsorption. An inhibitor molecule were absorbed by metal surface and follow Langmuir isotherms low and establishes an efficient macromolecule inhibitor having excellent inhibitive properties due to entity of S (sulfur) atom, N (nitrogen) atom and O (oxygen) atom.

  13. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    PLoS One, 2016;11(5):e0156625.
    PMID: 27243231 DOI: 10.1371/journal.pone.0156625
    The synthesis of derivatives of 4-Methylumbelliferone (4-MUs), which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU) by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR) and micro-elemental analysis (CHNS). The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP) ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT)-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), for these synthesized antioxidants were also studied.
  14. Al-Majedy YK, Kadhum AA, Al-Amiery AA, Mohamad AB
    Molecules, 2014 Aug 07;19(8):11791-9.
    PMID: 25105917 DOI: 10.3390/molecules190811791
    Some novel coumarins were synthesized starting from 4-hydroxycoumarin and methyl bromoacetate. The structures of the newly obtained compounds were confirmed by elemental analysis, mass, IR and NMR spectra.
  15. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
  16. Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, Al-Amiery AA, Kadhum AA, Mohamad AB
    Molecules, 2016 Jan 23;21(2):135.
    PMID: 26805811 DOI: 10.3390/molecules21020135
    Syntheses of coumarins, which are a structurally interesting antioxidant activity, was done in this article. The modification of 7-hydroxycoumarin by different reaction steps was done to yield target compounds. Molecular structures were characterized by different spectroscopical techniques (Fourier transformation infrared and nuclear magnetic resonance). Antioxidant activities were performed by using various in vitro spectrophometric assays against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydrogen peroxide (H2O2). All compounds exhibited high efficiency as antioxidants compared to ascorbic acid. The highest efficiency scavenging activity was found for compound 3 (91.0 ± 5.0), followed by compounds 2 and 4 (88.0 ± 2.00; and 87.0 ± 3.00). Ascorbic acid C was used as a standard drug with a percentage inhibition of 91.00 ± 1.5. The mechanism of the synthesized compounds as antioxidants was also studied. Hartree-Fock-based quantum chemical studies have been carried out with the basis set to 3-21G, in order to obtain information about the three-dimensional (3D) geometries, electronic structure, molecular modeling, and electronic levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), to understand the antioxidant activity for the synthesized compounds.
  17. Alalayah WM, Kalil MS, Kadhum AA, Jahim JM, Jaapar SZ, Alauj NM
    Pak J Biol Sci, 2009 Nov 15;12(22):1462-7.
    PMID: 20180320
    A two-stage fermentation process consisting of dark and photo-fermentation periods was carried out in a batch reactor. In the first stage, glucose was fermented in the dark stage using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564; CSN1-4) to produce acetate, CO2 and H2. The acetate produced in the first stage is fermented to H2 and CO2 by Rhodobacter sphaeroides NCIMB 8253 for further hydrogen production in the second, illuminated stage. The yield of hydrogen in the first stage was about 3.10 mol H2 (mol glucose)(-1) at a glucose concentration of 10 g L(-1), pH 6 +/- 0.2 and 37 degrees C and the second stage yield was about 1.10-1.25 mol H2 (mol acetic acid)(-1) at pH 6.8 +/- 0.2 and 32 degrees C, without removal of the Clostridium CSN1-4. The overall yield of hydrogen in the two-stage process, with glucose as the main substrate was higher than single-stage fermentation.
  18. Alalayah WM, Kalil MS, Kadhum AA, Jahim J, Zaharim A, Alauj NM, et al.
    Pak J Biol Sci, 2010 Jul 15;13(14):674-82.
    PMID: 21848059
    Box-Wilson design (BWD) model was applied to determine the optimum values of influencing parameters in anaerobic fermentation to produce hydrogen using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). The main focus of the study was to find the optimal relationship between the hydrogen yield and three variables including initial substrate concentration, initial medium pH and reaction temperature. Microbial growth kinetic parameters for hydrogen production under anaerobic conditions were determined using the Monod model with incorporation of a substrate inhibition term. The values of micro(max) (maximum specific growth rate) and K, (saturation constant) were 0.398 h(-1) and 5.509 g L(-1), respectively, using glucose as the substrate. The experimental substrate and biomass-concentration profiles were in good agreement with those obtained by the kinetic-model predictions. By varying the conditions of the initial substrate concentration (1-40 g L(-1)), reaction temperature (25-40 degrees C) and initial medium pH (4-8), the model predicted a maximum hydrogen yield of 3.24 mol H2 (mol glucose)(-1). The experimental data collected utilising this design was successfully fitted to a second-order polynomial model. An optimum operating condition of 10 g L(-1) initial substrate concentration, 37 degrees C reaction temperature and 6.0 +/- 0.2 initial medium pH gave 80% of the predicted maximum yield of hydrogen where as the experimental yield obtained in this study was 77.75% exhibiting a close accuracy between estimated and experimental values. This is the first report to predict bio-hydrogen yield by applying Box-Wilson Design in anaerobic fermentation while optimizing the effects of environmental factors prevailing there by investigating the effects of environmental factors.
  19. Alkotaini B, Anuar N, Kadhum AA
    Appl Biochem Biotechnol, 2015 Feb;175(4):1868-78.
    PMID: 25427593 DOI: 10.1007/s12010-014-1410-4
    The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
  20. Alkotaini B, Anuar N, Kadhum AA, Sani AA
    World J Microbiol Biotechnol, 2014 Apr;30(4):1377-85.
    PMID: 24272828 DOI: 10.1007/s11274-013-1558-z
    A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links