Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Aaiza G, Khan I, Shafie S
    Nanoscale Res Lett, 2015 Dec;10(1):490.
    PMID: 26698873 DOI: 10.1186/s11671-015-1144-4
    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
  2. Adil SO, Musa KI, Uddin F, Khan A, Khan I, Shakeel A, et al.
    Arch Public Health, 2024 Feb 20;82(1):22.
    PMID: 38378657 DOI: 10.1186/s13690-024-01250-3
    OBJECTIVE: To determine the prevalence and associated risk factors of undiagnosed metabolic syndrome (MetS) using three different definitions among apparently healthy adults of Karachi, Pakistan.

    METHODS: This community-based cross-sectional survey was conducted in Karachi, Pakistan, from January 2022 to August 2022. A total of 1065 healthy individuals aged 25-80 years of any gender were consecutively included. MetS was assessed using the National Cholesterol Education Program for Adult Treatment Panel (NCEP-ATP) III guidelines, International Diabetes Federation (IDF), and modified NCEP-ATP III.

    RESULTS: The prevalence of MetS was highest with the modified NCEP-ATP III definition at 33.9% (95% CI: 31-36), followed by the IDF definition at 32.2% (95% CI: 29-35). In contrast, the prevalence was lower at 22.4% (95% CI: 19-25) when using the NCEP ATP III definition. The risk of MetS significantly increases with higher BMI, as defined by the IDF criteria (adjusted OR [ORadj] 1.13, 95% CI 1.09-2.43), NCEP-ATP III criteria (ORadj 1.15, 95% CI 1.11-1.19), and modified NCEP-ATP III criteria (ORadj 1.16, 95% CI 1.12-1.20). Current smokers had significantly higher odds of MetS according to the IDF (ORadj 2.72, 95% CI 1.84-4.03), NCEP-ATP III (ORadj 3.93, 95% CI 2.55-6.06), and modified NCEP-ATP III (ORadj 0.62, 95% CI 0.43-0.88). Areca nut use was associated with higher odds of MetS according to both IDF (ORadj 1.71, 95% CI 1.19-2.47) and modified NCEP-ATP III criteria (ORadj 1.58, 95% CI 1.10-2.72). Furthermore, low physical activity had significantly higher odds of MetS according to the NCEP-ATP III (ORadj 1.36, 95% CI 1.01-1.84) and modified NCEP-ATP III criteria (ORadj 1.56, 95% CI 1.08-2.26).

    CONCLUSION: One-third of the healthy individuals were diagnosed with MetS based on IDF, NCEP-ATP III, and modified NCEP-ATP III criteria. A higher BMI, current smoking, areca nut use, and low physical activity were significant factors.

  3. Ahmad N, Khan AH, Khan I, Khan A, Atif M
    Int J Hypertens, 2018;2018:8524063.
    PMID: 29721335 DOI: 10.1155/2018/8524063
    Aim: To evaluate doctors' knowledge, attitude, and practices and predictors of adherence to Malaysian hypertension guidelines (CPG 2008).
    Methods: Twenty-six doctors involved in hypertension management at Penang General Hospital were enrolled in a cross-sectional study. Doctors' knowledge and attitudes towards guidelines were evaluated through a self-administered questionnaire. Their practices were evaluated by noting their prescriptions written to 520 established hypertensive outpatients (20 prescriptions/doctor). SPSS 17 was used for data analysis.
    Results: Nineteen doctors (73.07%) had adequate knowledge of guidelines. Specialists and consultants had significantly better knowledge about guidelines' recommendations. Doctors were positive towards guidelines with mean attitude score of 23.15 ± 1.34 points on a 30-point scale. The median number of guidelines compliant prescriptions was 13 (range 5-20). Statistically significant correlation (rs = 0.635, P < 0.001) was observed between doctors' knowledge and practice scores. A total of 349 (67.1%) prescriptions written were guidelines compliant. In multivariate analysis hypertension clinic (OR = 0.398, P = 0.008), left ventricular hypertrophy (OR = 0.091, P = 0.001) and heart failure (OR = 1.923, P = 0.039) were significantly associated with guidelines adherence.
    Conclusion: Doctors' knowledge of guidelines is reflected in their practice. The gap between guidelines recommendations and practice was seen in the pharmacotherapy of uncomplicated hypertension and hypertension with left ventricular hypertrophy, renal disease, and diabetes mellitus.
    Study site: Cardiology, nephrology, diabetic, and hypertension clinics of Hospital Pulau Pinang, Malaysia
  4. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

  5. Al-Samman AM, Rahman TA, Azmi MH, Hindia MN, Khan I, Hanafi E
    PLoS One, 2016 Sep 21;11(9):e0163034.
    PMID: 27654703 DOI: 10.1371/journal.pone.0163034
    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
  6. Al-Samman AM, Azmi MH, Rahman TA, Khan I, Hindia MN, Fattouh A
    PLoS One, 2016;11(12):e0164944.
    PMID: 27992445 DOI: 10.1371/journal.pone.0164944
    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
  7. AlShayban DM, Naqvi AA, Alhumaid O, AlQahtani AS, Islam MA, Ghori SA, et al.
    Front Pharmacol, 2020;11:60.
    PMID: 32153397 DOI: 10.3389/fphar.2020.00060
    Objective: The study aimed to evaluate the association between disease knowledge and medication adherence in patients with type 2 diabetes mellitus.

    Methods: A cross-sectional study was conducted for three months, in patients with type 2 diabetes who visited three community pharmacies located in Khobar, Saudi Arabia. Patients' disease knowledge and their adherence to medications were documented using Arabic versions of the Michigan Diabetes Knowledge Test and the General Medication Adherence Scale respectively. Data were analyzed through SPSS version 23. Chi-square test was used to report association of demographics with adherence. Spearman's rank correlation was employed to report the relationship among HbA1c values, disease knowledge and adherence. Logistic regression model was utilized to report the determinants of medication adherence and their corresponding adjusted odds ratio. Study was approved by concerned ethical committee (IRB-UGS-2019-05-001).

    Results: A total of 318 patients consented to participate in the study. Mean HbA1c value was 8.1%. A third of patients (N = 105, 33%) had high adherence and half of patients (N = 162, 50.9%) had disease knowledge between 51% - 75%. A significantly weak-to-moderate and positive correlation (ρ = 0.221, p < 0.01) between medication adherence and disease knowledge was reported. Patients with >50% correct answers in the diabetes knowledge test questionnaire were more likely to be adherent to their medications (AOR 4.46, p < 0.01).

    Conclusion: Disease knowledge in most patients was average and half of patients had high-to-good adherence. Patients with better knowledge were 4 to 5 times more likely to have high adherence. This highlights the importance of patient education and awareness regarding medication adherence in managing diabetes.

  8. Ali F, Khan I, Shafie S
    PLoS One, 2014;9(2):e85099.
    PMID: 24551033 DOI: 10.1371/journal.pone.0085099
    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
  9. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
  10. Ali O, Ishak MK, Bhatti MKL, Khan I, Kim KI
    Sensors (Basel), 2022 Jan 27;22(3).
    PMID: 35161740 DOI: 10.3390/s22030995
    The Internet of Things (IoT) is an extensive network of heterogeneous devices that provides an array of innovative applications and services. IoT networks enable the integration of data and services to seamlessly interconnect the cyber and physical systems. However, the heterogeneity of devices, underlying technologies and lack of standardization pose critical challenges in this domain. On account of these challenges, this research article aims to provide a comprehensive overview of the enabling technologies and standards that build up the IoT technology stack. First, a layered architecture approach is presented where the state-of-the-art research and open challenges are discussed at every layer. Next, this research article focuses on the role of middleware platforms in IoT application development and integration. Furthermore, this article addresses the open challenges and provides comprehensive steps towards IoT stack optimization. Finally, the interfacing of Fog/Edge Networks to IoT technology stack is thoroughly investigated by discussing the current research and open challenges in this domain. The main scope of this study is to provide a comprehensive review into IoT technology (the horizontal fabric), the associated middleware and networks required to build future proof applications (the vertical markets).
  11. Ali S, Amjad Z, Khan TM, Maalik A, Iftikhar A, Khan I, et al.
    Parasitology, 2020 Sep;147(10):1133-1139.
    PMID: 32517832 DOI: 10.1017/S0031182020000967
    Toxoplasmosis is a parasitic zoonotic disease caused by Toxoplasma (T.) gondii. Limited data are available on the occurrence of T. gondii in women especially pregnant women in Pakistan. The present study aimed to determine the occurrence and risk factors associated with T. gondii in pregnant and non-pregnant women in Punjab Province, Pakistan. A cross-sectional study was conducted and 593 samples were collected from pregnant (n = 293) and non-pregnant (n = 300) women of District Headquarter Hospitals of Chiniot, Faisalabad, Jhang and Okara, Pakistan. Data related to demographic parameters and risk factors were collected using a pretested questionnaire on blood sampling day. Serum samples were screened for antibodies (IgG) against T. gondii using ELISA. A univariant and binomial logistic regression was applied to estimate the association between seropositive and explanatory variables considering the 95% confidence interval. P value ⩽0.05 was considered statistically significant for all analysis. Out of 593, 44 (7.42%) women were seropositive for T. gondii IgG antibodies. Occupation, age, sampling location, socioeconomic status, contact with cat, pregnancy status and trimester of pregnancy were significantly associated with seropositivity for T. gondii antibodies. Location and trimester of pregnancy were identified as potential risk factors for T. gondii seropositivity based on binomial logistic regression. Toxoplasma gondii is prevalent in pregnant and non-pregnant women. Therefore, now a necessitated awareness is required to instruct the individuals about these infectious diseases (toxoplasmosis) and their control strategies to maintain the health of human population. Moreover, health awareness among public can help the minimization of T. gondii infection during pregnancy and subsequent risk of congenital toxoplasmosis.
  12. Alsafrani AE, Adeosun WA, Marwani HM, Khan I, Jawaid M, Asiri AM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641198 DOI: 10.3390/polym13193383
    A new class of conductive metal-organic framework (MOF), polyaniline- aluminum succinate (PANI@Al-SA) nanocomposite was prepared by oxidative polymerization of aniline monomer using potassium persulfate as an oxidant. Several analytical techniques such as FTIR, FE-SEM, EDX, XRD, XPS and TGA-DTA were utilized to characterize the obtained MOFs nanocomposite. DC electrical conductivity of polymer-MOFs was determined by four probe method. A bare glassy carbon electrode (GCE) was modified by nafion/PANI@Al-SA, and examined for Zn (II) ion detection. Modified electrode showed improved efficiency by 91.9%. The modified electrode (PANI@Al-SA/nafion/GCE) exhibited good catalytic property and highly selectivity towards Zn(II) ion. A linear dynamic range of 2.8-228.6 µM was obtained with detection limit of LOD 0.59 µM and excellent sensitivity of 7.14 µA µM-1 cm-2. The designed procedure for Zn (II) ion detection in real sample exhibited good stability in terms of repeatability, reproducibility and not affected by likely interferents. Therefore, the developed procedure is promising for quantification of Zn(II) ion in real samples.
  13. Aman S, Khan I, Ismail Z, Salleh MZ
    Neural Comput Appl, 2018;30(3):789-797.
    PMID: 30100679 DOI: 10.1007/s00521-016-2688-7
    Impacts of gold nanoparticles on MHD Poiseuille flow of nanofluid in a porous medium are studied. Mixed convection is induced due to external pressure gradient and buoyancy force. Additional effects of thermal radiation, chemical reaction and thermal diffusion are also considered. Gold nanoparticles of cylindrical shape are considered in kerosene oil taken as conventional base fluid. However, for comparison, four other types of nanoparticles (silver, copper, alumina and magnetite) are also considered. The problem is modeled in terms of partial differential equations with suitable boundary conditions and then computed by perturbation technique. Exact expressions for velocity and temperature are obtained. Graphical results are mapped in order to tackle the physics of the embedded parameters. This study mainly focuses on gold nanoparticles; however, for the sake of comparison, four other types of nanoparticles namely silver, copper, alumina and magnetite are analyzed for the heat transfer rate. The obtained results show that metals have higher rate of heat transfer than metal oxides. Gold nanoparticles have the highest rate of heat transfer followed by alumina and magnetite. Porosity and magnetic field have opposite effects on velocity.
  14. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QM
    Sci Rep, 2017 05 26;7(1):2445.
    PMID: 28550289 DOI: 10.1038/s41598-017-01358-3
    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.
  15. Bashir A, Asif M, Saadullah M, Saleem M, Khalid SH, Hussain L, et al.
    ACS Omega, 2022 Jul 26;7(29):25772-25782.
    PMID: 35910099 DOI: 10.1021/acsomega.2c03053
    Melilotus indicus (L.) All. is known to have anti-inflammatory and anticancer properties. The present study explored the in vivo skin carcinogenesis attenuating potential of ethanolic extract of M. indicus (L.) All. (Miet) in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer model. The ethanolic extract of the plant was prepared by a maceration method. HPLC analysis indicated the presence of quercetin in abundance and also various other phytoconstituents. DPPH radical scavenging assay results showed moderate antioxidant potential (IC50 = 93.55 ± 5.59 μg/mL). A topical acute skin irritation study showed the nonirritant nature of Miet. Data for the skin carcinogenic model showed marked improvement in skin architecture in Miet and its primary phytochemicals (quercetin and coumarin) treated groups. Miet 50% showed comparable effects with 5-fluorouracil. Significant (p < 0.05) anticancerous effects were seen in coumarin-quercetin combination-treated animals than in single agent (coumarin and quercetin alone)-treated animals. Chorioallantoic membrane (CAM) assay results showed the antiangiogenic potential of Miet. Treatment with Miet significantly down-regulated the serum levels of CEA (carcinoembryonic antigen) and TNF-α (Tumor necrosis factor-α). Data for the docking study indicated the binding potential of quercetin and coumarin with TNF-α, EGFR, VEGF, and BCL2 proteins. Thus, it is concluded that Miet has skin cancer attenuating potential that is proposed to be due to the synergistic actions of its bioactive molecules. Further studies to explore the effects of Miet and its bioactive molecules as an adjuvant therapy with low dose anticancer drugs are warranted, which may lead to a new area of research.
  16. Bitar AN, Syed Sulaiman SA, Ali IAH, Khan I, Khan AH
    J Pharm Bioallied Sci, 2019 10 18;11(4):310-320.
    PMID: 31619912 DOI: 10.4103/jpbs.JPBS_126_19
    Chronic obstructive pulmonary disease (COPD) can be associated with systemic inflammatory trademarks and can coexist with other chronic debilitating diseases such as osteoporosis, which is considered among the most serious comorbidities of COPD. In this review, we aimed at finding answers for the following questions and tried to encapsulate the available literature: (1) how prevalent is osteoporosis among patients with COPD? (2) What are severity patterns of osteoporosis in case of COPD? (3) What are the therapeutic outcomes for patients with osteoporotic COPD? The total number of patients with COPD from all studies was 3815, majority of which were male (2658) representing 69.67% of patients. The mean ± standard deviation for percentage of forced expiratory volume in 1s (FEV1%) was 55.43 ± 14.62%, body mass index for almost 91.29% of patients was 24.4 ± 4.45 kg/m2, whereas fat-free mass index (FFMI) was 17 ± 0.93 kg/m2 for 17.66%. The percentage of patients with COPD having osteoporosis varied in the analyzed studies from 14% up to 66.6%. The mean prevalence of reported osteopenia from 14 studies (n = 2107) was 39.91%, whereas for osteoporosis, the mean prevalence was 37.62% for all included studies. Osteoporosis was highly prevalent among patients with COPD. It is reasonable to call for osteoporosis screening in patients with COPD who are above 65 years, in advanced stages, with BMI lower than 21 kg/m2 or with FFMI lower than 16 kg/m2 for males and 15 kg/m2 for females. There is a lack of research investigating severity and treatments of osteoporosis in patients with COPD.
  17. Bitar AN, Khan AH, Sulaiman SAS, Ali IABH, Khan I
    J Pharm Bioallied Sci, 2021 Nov;13(Suppl 2):S1215-S1223.
    PMID: 35017959 DOI: 10.4103/jpbs.jpbs_353_21
    Introduction: Little is known about the correlation between chronic obstructive pulmonary disease (COPD) and heroin smoking. Heroin smoking is a recent underinvestigated problem. The goal of this study is to study the impact of heroin smoking among COPD patients.

    Methods: This is a descriptive clinical study. A combination of self-reporting questionnaires and data extraction tools were used to collect information during baseline tests, interviews, and follow-ups. Patients' medical, clinical, and socioeconomic history were recorded. Participants were recruited using random sampling from multiple centers.

    Results: Out of 1034 COPD patients, heroin smokers represented the vast majority of addiction cases (n = 133). Heroin smokers were leaner than non-addicts (19.78 ± 4.07 and 24.01 ± 5.6, respectively). The most common type of comorbidities among heroin smokers was emphysema (27%). Both the forced expiratory volume (FEV1)/forced vital capacity ratio and FEV1% predicted were lower among heroin smokers than non-addicts (52.79 ± 12.71 and 48.54 ± 14.38, respectively). The majority of heroin smokers (55%) had advanced COPD, and at least 15% of heroin smokers suffered from frequent respiratory failure. The mean ± SD for COPD onset age among heroin smokers was 44.23 ± 5.72, and it showed a statistically significant correlation (P < 0.001).

    Conclusion: Heroin smoking might be linked to the onset of COPD. Heroin smokers showed a significantrespiratory impairment compared to tobacco smokers of the same age group.

  18. Fahim I, Ishaque A, Ramzan F, Shamsuddin SABA, Ali A, Salim A, et al.
    Curr Issues Mol Biol, 2023 May 07;45(5):4100-4123.
    PMID: 37232730 DOI: 10.3390/cimb45050261
    BACKGROUND: Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration.

    OBJECTIVES: The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders.

    METHODOLOGY: hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins.

    RESULTS: All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days.

    CONCLUSIONS: The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration.

  19. Farayola MF, Shafie S, Mohd Siam F, Khan I
    Comput Methods Programs Biomed, 2020 Apr;187:105202.
    PMID: 31835107 DOI: 10.1016/j.cmpb.2019.105202
    Background This paper presents a numerical simulation of normal and cancer cells' population dynamics during radiotherapy. The model used for the simulation was the improved cancer treatment model with radiotherapy. The model simulated the population changes during a fractionated cancer treatment process. The results gave the final populations of the cells, which provided the final volumes of the tumor and normal cells. Method The improved model was obtained by integrating the previous cancer treatment model with the Caputo fractional derivative. In addition, the cells' population decay due to radiation was accounted for by coupling the linear-quadratic model into the improved model. The simulation of the treatment process was done with numerical variables, numerical parameters, and radiation parameters. The numerical variables include the populations of the cells and the time of treatment. The numerical parameters were the model factors which included the proliferation rates of cells, competition coefficients of cells, and perturbation constant for normal cells. The radiation parameters were clinical data based on the treatment procedure. The numerical parameters were obtained from the previous literature while the numerical variables and radiation parameters, which were clinical data, were obtained from reported data of four cancer patients treated with radiotherapy. The four cancer patients had tumor volumes of 28.4 cm3, 18.8 cm3, 30.6 cm3, and 12.6 cm3 and were treated with different treatment plans and a fractionated dose of 1.8 Gy each. The initial populations of cells were obtained by using the tumor volumes. The computer simulations were done with MATLAB. Results The final volumes of the tumors, from the results of the simulations, were 5.67 cm3, 4.36 cm3, 5.74 cm3, and 6.15 cm3 while the normal cells' volumes were 28.17 cm3, 18.68 cm3, 30.34 cm3, and 12.54 cm3. The powers of the derivatives were 0.16774, 0.16557, 0.16835, and 0.16. A variance-based sensitivity analysis was done to corroborate the model with the clinical data. The result showed that the most sensitive factors were the power of the derivative and the cancer cells' proliferation rate. Conclusion The model provided information concerning the status of treatments and can also predict outcomes of other treatment plans.
  20. Farayola MF, Shafie S, Siam FM, Khan I
    Comput Methods Programs Biomed, 2020 May;188:105306.
    PMID: 31901851 DOI: 10.1016/j.cmpb.2019.105306
    BACKGROUND: This paper presents a mathematical model that simulates a radiotherapy cancer treatment process. The model takes into consideration two important radiobiological factors, which are repair and repopulation of cells. The model was used to simulate the fractionated treatment process of six patients. The results gave the population changes in the cells and the final volumes of the normal and cancer cells.

    METHOD: The model was formulated by integrating the Caputo fractional derivative with the previous cancer treatment model. Thereafter, the linear-quadratic with the repopulation model was coupled into the model to account for the cells' population decay due to radiation. The treatment process was then simulated with numerical variables, numerical parameters, and radiation parameters. The numerical parameters which included the proliferation coefficients of the cells, competition coefficients of the cells, and the perturbation constant of the normal cells were obtained from previous literature. The radiation and numerical parameters were obtained from reported clinical data of six patients treated with radiotherapy. The patients had tumor volumes of 24.1cm3, 17.4cm3, 28.4cm3, 18.8cm3, 30.6cm3, and 12.6cm3 with fractionated doses of 2 Gy for the first two patients and 1.8 Gy for the other four. The initial tumor volumes were used to obtain initial populations of cells after which the treatment process was simulated in MATLAB. Subsequently, a global sensitivity analysis was done to corroborate the model with clinical data. Finally, 96 radiation protocols were simulated by using the biologically effective dose formula. These protocols were used to obtain a regression equation connecting the value of the Caputo fractional derivative with the fractionated dose.

    RESULTS: The final tumor volumes, from the results of the simulations, were 3.58cm3, 8.61cm3, 5.68cm3, 4.36cm3, 5.75cm3, and 6.12cm3, while those of the normal cells were 23.87cm3, 17.29cm3, 28.17cm3, 18.68cm3, 30.33cm3, and 12.55cm3. The sensitivity analysis showed that the most sensitive model factors were the value of the Caputo fractional derivative and the proliferation coefficient of the cancer cells. Lastly, the obtained regression equation accounted for 99.14% of the prediction.

    CONCLUSION: The model can simulate a cancer treatment process and predict the results of other radiation protocols.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links