Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Abd Samad NA, Lai CW, Lau KS, Abd Hamid SB
    Materials (Basel), 2016 Nov 22;9(11).
    PMID: 28774068 DOI: 10.3390/ma9110937
    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl₂ and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO₂ into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO₂ loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO₂-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.
  2. Abdul Jalil NAS, Aboelazm E, Khe CS, Ali GAM, Chong KF, Lai CW, et al.
    PLoS One, 2024;19(2):e0292737.
    PMID: 38324619 DOI: 10.1371/journal.pone.0292737
    The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.
  3. Ali N, Abbas S, Cao Y, Fazal H, Zhu J, Lai CW, et al.
    J Colloid Interface Sci, 2022 Feb 07;615:707-715.
    PMID: 35168019 DOI: 10.1016/j.jcis.2022.02.012
    Solar steam generation has great potential in alleviating freshwater crises, particularly in regions with accessible seawater and abundant insolation. Inexpensive, efficient, and eco-friendly photothermal materials are desired to fabricate sunlight-driven evaporation devices. Here, we have designed an economical strategy to fabricate a high-performance wood-based solar steam generation device. In current study, 3D-hierarchical Cu3SnS4 has been loaded on wood substrates of variable sizes via an in-situ solvothermal method. Considering the water transportation capacity and thermal insulation property of wood, an enhanced light absorption was achieved by a uniform coating of Cu3SnS4 on the inside and outside of the 3D porous structure of the wood. Thanks for the synergistic effect of Cu3SnS4 and wood substrate, the obtained composite endorsed high-performance solar steam generation with a steam generation efficiency of 90% and an evaporation rate as high as 1.35 kg m-2h-1 under one sun.
  4. Arifin SNH, Radin Mohamed RMS, Al-Gheethi A, Lai CW, Gopalakrishnan Y, Hairuddin ND, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(10):25103-25118.
    PMID: 34617227 DOI: 10.1007/s11356-021-16732-y
    The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO2 composite (MZTC) synthesized by applying the electrochemical anodization (ECA). The synthesis process was conducted at different voltages (10, 40, and 60) V in 1 h and using electrophoresis deposition (EPD) in doping zeolite. The MZTC was covered with the array ordered, smooth and optimum elongated nanotubes with 5.1 μm of the length, 120.3 nm of the inner diameter 14.5 nm of the wall thickness with pure titanium and crystalline titania as determined by FESEM/EDS, and XRD. The kinetic study by following Langmuir-Hinshelwood(L-H) model and pseudo first order, the significant constant rate was obtained at pH 11 which was 0.079 ppm/min, 0.75 cm2 of MZTC catalyst loading size achieved 0.076 ppm/min and 5 ppm of TCC initial concentration reached 0.162 ppm/min. The high-performance liquid chromatography (HPLC) analysis for mechanism study of TCC photocatalytic degradation revealed eleven intermediate products after the whole process of photocatalysis. In regard of toxicology assessment by the bacteria which is Photobacterium phosphoreum, the obtained concentration of TCC at minute 60 was less satisfied with remained 0.36 ppm of TCC was detected indicates that the concentration was above allowable level. Where the allowable level of TCC in stream is 0.1 ppm.
  5. Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ
    Polymers (Basel), 2021 Oct 14;13(20).
    PMID: 34685289 DOI: 10.3390/polym13203530
    In this study, a novel cellulose/Ag/TiO2 nanocomposite was successfully synthesized via the hydrothermal method. The cellulose extracted from oil palm empty fruit bunch (OPEFB) could address the disposal issue created by OPEFB biomass. Characterization studies such as FESEM, EDX, HRTEM, XRD, FTIR, UV-Vis DRS, PL, XPS, and surface analysis were conducted. It was observed that the incorporation of cellulose could hinder the agglomeration, reduce the band gap energy to 3 eV, increase the specific surface area to 150.22 m3/g, and lower the recombination rate of the generated electron-hole pairs compared to Ag/TiO2 nanoparticles. The excellent properties enhance the sonocatalytic degradation efficiency of 10 mg/L Congo red (up to 81.3% after 10 min ultrasonic irradiation) in the presence of 0.5 g/L cellulose/Ag/TiO2 at 24 kHz and 280 W. The improvement of catalytic activity was due to the surface plasmon resonance effect of Ag and numerous hydroxyl groups on cellulose that capture the holes, which delay the recombination rate of the charge carriers in TiO2. This study demonstrated an alternative approach in the development of an efficient sonocatalyst for the sonocatalytic degradation of Congo red.
  6. Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ
    Polymers (Basel), 2022 Dec 01;14(23).
    PMID: 36501638 DOI: 10.3390/polym14235244
    Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
  7. Chan YY, Pang YL, Lim S, Lai CW, Abdullah AZ, Chong WC
    Environ Sci Pollut Res Int, 2020 Oct;27(28):34675-34691.
    PMID: 31628641 DOI: 10.1007/s11356-019-06583-z
    Nowadays, the current synthesis techniques used in industrial production of nanoparticles have been generally regarded as nonenvironmentally friendly. Consequently, the biosynthesis approach has been proposed as an alternative to reduce the usage of hazardous chemical compounds and harsh reaction conditions in the production of nanoparticles. In this work, pure, iron (Fe)-doped and silver (Ag)-doped zinc oxide (ZnO) nanoparticles were successfully synthesized through the green route using Clitoria ternatea Linn. The optical, chemical, and physical properties of the biosynthesized ZnO nanoparticles were then analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and surface analysis. The biosynthesized ZnO nanoparticles were crystallized with a hexagonal wurtzite structure and possessed smaller particle sizes than those of commercially or chemically produced samples. The existence of biomolecules to act as reducing and stabilizing agents from C. ternatea Linn aqueous extract was confirmed using FTIR analysis. The biosynthesized ZnO nanoparticles mainly comprised of negatively charged groups and responsible for moderately stable dispersion of the nanoparticles. All these properties were favorable for the sonocatalytic degradation of Congo red. Sonocatalytic activity of ZnO nanoparticles was studied through the degradation of 10 mg/L Congo red using ultrasonic irradiation at 45 kHz and 80 W. The results showed that the sonocatalytic degradation efficiency of Congo red in the presence of biosynthesized ZnO nanoparticles prepared at 50 °C for 1 h could achieve 88.76% after 1 h. The sonocatalytic degradation efficiency of Congo red in the presence of Ag-doped ZnO was accelerated to 94.42% after 10 min which might be related to the smallest band gap energy (3.02 eV) and the highest specific surface area (10.31 m2/g) as well as pore volume (0.0781 cm3/g). Lastly, the biosynthesized ZnO nanoparticles especially Ag-doped ZnO offered significant antibacterial potential against Escherichia coli which indicated its ability to inhibit the normal growth and replication of bacterial cells. These results affirmed that the biosynthesized ZnO nanoparticles could be used as an alternative to the current chemical compounds and showed a superior sonocatalytic activity toward degradation of Congo red.
  8. Chau JHF, Lee KM, Pang YL, Abdullah B, Juan JC, Leo BF, et al.
    PMID: 34786623 DOI: 10.1007/s11356-021-17243-6
    Textile dyeing wastewater becomes one of the root causes of environmental pollution. Titanium dioxide (TiO2) is one of the photocatalysts that shows prominent organic dye photodegradation ability. In this study, a porous tungsten oxide (WO3)/TiO2 composite was prepared through ultrasonic-assisted solvothermal technique with varying amounts of WO3 ranging from 0.25 to 5 weight % (wt.%). The prepared 0.50 wt.% WO3/TiO2 (0.50WTi) composite exhibited the highest photodegradation activity (4.39 × 10-2 min-1) and complete mineralization in chemical oxygen demand (COD) reading towards 30 mg.L-1 of Reactive Black 5 (RB5) dye under 60 min of light irradiation. Effects of large surface area, small crystallite size, high pore volume and size, and low electron-hole pair recombination rate attributed to the superiority of 0.50WTi. Besides, 0.50WTi could be reused, showing 86.50% of RB5 photodegradation at the fifth cycle. Scavenger study demonstrated that photogenerated hole (h+) was the main active species of 0.50WTi to initiate the RB5 photodegradation. Cytotoxicity assessment determined the readings of half-maximal inhibitory concentration (IC50) were 1 mg.mL-1 and 0.61 mg.mL-1 (24 and 72 h of incubations) for the 0.50WTi composite.
  9. Chong SW, Lai CW, Abd Hamid SB
    Materials (Basel), 2016 Jan 25;9(2).
    PMID: 28787869 DOI: 10.3390/ma9020069
    A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
  10. Ghahramani Y, Mokhberi M, Mousavi SM, Hashemi SA, Fallahi Nezhad F, Chiang WH, et al.
    Molecules, 2022 Dec 04;27(23).
    PMID: 36500636 DOI: 10.3390/molecules27238543
    The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.
  11. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Rahsepar M, Bahrani S, et al.
    Polymers (Basel), 2020 Jun 23;12(6).
    PMID: 32585991 DOI: 10.3390/polym12061407
    X-ray radiation is a harmful carcinogenic electromagnetic source that can adversely affect the health of living species and deteriorate the DNA of cells, thus it's vital to protect vulnerable sources from them. To address this flaw, the conductive polymeric structure of polyaniline (PANi) was reinforced with diverse filler loadings (i.e., 25 wt % and 50 wt %) of hybrid graphene oxide-iron tungsten nitride (ITN) flakes toward attenuation of X-ray beams and inhabitation of microorganisms' growth. Primary characterizations confirmed the successful decoration of graphene oxide (GO) with interconnected and highly dense structure of iron tungsten nitride with a density of about 24.21 g.cm⁻3 and reinforcement of PANi with GO-ITN. Additionally, the outcome of evaluations showed the superior performance of developed shields, where a shield with 1.2 mm thickness containing 50 wt % GO-ITN showed 131.73 % increase in the electrical conductivity (compared with neat PANi) along with 78.07%, 57.12%, and 44.99% decrease in the amplitude of the total irradiated X-ray waves at 30, 40, and 60 kVp tube voltages, respectively, compared with control X-ray dosage. More importantly, the developed shields not only showed non-toxic nature and improved the viability of cells, but also completely removed the selected microorganisms at a concentration of 1000 µg.mL-1.
  12. Hiba IH, Koh JK, Lai CW, Mousavi SM, Badruddin IA, Hussien M, et al.
    Heliyon, 2024 Apr 15;10(7):e28902.
    PMID: 38633652 DOI: 10.1016/j.heliyon.2024.e28902
    Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.
  13. Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, et al.
    Chem Rec, 2024 Feb 05.
    PMID: 38314935 DOI: 10.1002/tcr.202300303
    Nanotechnology has emerged as a pivotal tool in biomedical research, particularly in developing advanced sensing platforms for disease diagnosis and therapeutic monitoring. Since gold nanoparticles are biocompatible and have special optical characteristics, they are excellent choices for surface-enhanced Raman scattering (SERS) sensing devices. Integrating fluorescence characteristics further enhances their utility in real-time imaging and tracking within biological systems. The synergistic combination of SERS and fluorescence enables sensitive and selective detection of biomolecules at trace levels, providing a versatile platform for early cancer diagnosis and drug monitoring. In cancer detection, AuNPs facilitate the specific targeting of cancer biomarkers, allowing for early-stage diagnosis and personalized treatment strategies. The enhanced sensitivity of SERS, coupled with the tunable fluorescence properties of AuNPs, offers a powerful tool for the identification of cancer cells and their microenvironment. This dual-mode detection not only improves diagnostic accuracy but also enables the monitoring of treatment response and disease progression. In drug detection, integrating AuNPs with SERS provides a robust platform for identifying and quantifying pharmaceutical compounds. The unique spectral fingerprints obtained through SERS enable the discrimination of drug molecules even in complex biological matrices. Furthermore, the fluorescence property of AuNPs makes it easier to track medication distribution in real-time, maximizing therapeutic effectiveness and reducing adverse effects. Furthermore, the review explores the role of gold fluorescence nanoparticles in photodynamic therapy (PDT). By using the complementary effects of targeted drug release and light-induced cytotoxicity, SERS-guided drug delivery and photodynamic therapy (PDT) can increase the effectiveness of treatment against cancer cells. In conclusion, the utilization of gold fluorescence nanoparticles in conjunction with SERS holds tremendous potential for revolutionizing cancer detection, drug analysis, and photodynamic therapy. The dual-mode capabilities of these nanomaterials provide a multifaceted approach to address the challenges in early diagnosis, treatment monitoring, and personalized medicine, thereby advancing the landscape of biomedical applications.
  14. Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, et al.
    Clin Chim Acta, 2024 Apr 23;559:119685.
    PMID: 38663472 DOI: 10.1016/j.cca.2024.119685
    Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
  15. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
  16. Lai CW, Lau KS, Chou PM
    J Nanosci Nanotechnol, 2019 Dec 01;19(12):7934-7942.
    PMID: 31196312 DOI: 10.1166/jnn.2019.16777
    Using solar-powered water electrolysis systems for hydrogen generation is a key decision for the development of a sustainable hydrogen economy. A facile approach is presented in the present investigation to improve the solar-powered photoelectrochemical performance of water electrolysis systems by synthesising well-aligned and highly ordered TiO₂ nanotube films without bundling through the electrochemical anodisation technique. Herein, geometrical calculations were conducted for all synthesised TiO₂ nanotubes, and determination of the aspect ratio (AR) and geometric surface area factor (G) was achieved. On the basis of the collected data, well-aligned TiO₂ nanotubes with an AR of approximately 60 and G of approximately 400 m² ·g-1 were successfully formed in an electrolyte mixture of ethylene glycol with 0.3 wt% NH4F and 5 wt% H₂O₂ at 40 V for 60 min. The nanotubes were subsequently annealed at 400 °C to form anatase-phase TiO₂ nanotube films. The resultant well-aligned and highly ordered TiO₂ nanotube films exhibited a photocurrent density of 1.5 mA · cm-2 due to a large number of photo-induced electrons moving along the tube axis and perpendicular to the Ti substrate, which greatly reduces interfacial recombination losses.
  17. Lai CW, Sreekantan S, Lockman Z
    J Nanosci Nanotechnol, 2012 May;12(5):4057-66.
    PMID: 22852347
    Uniformly sized TiO2 nanotubes with high aspect ratios were synthesised on a large substrate (100 mm x 100 mm) via the bubbling system through anodisation of Ti in ethylene glycol containing 5 wt% NH4F and 5 wt% H2O2. The benefits of bubbling system in producing uniformly sized TiO2 nanotubes throughout the Ti foil are illustrated. Moreover, the effects of applied voltage and fluoride content on the resulting nanotubes were also considered. Such uniform sized TiO2 nanotubes are a key to produce hydrogen efficiently using PEC cell. The results show higher photocurrent responses for the high aspect ratio, uniform TiO2 nanotubes because of excellent interfacial electron transfer.
  18. Lai CW, Sreekantan S
    J Nanosci Nanotechnol, 2012 Apr;12(4):3170-4.
    PMID: 22849082
    Well aligned TiO2 nanotubes were successfully synthesized by anodization of Ti foil at 60 V in a fluorinated bath comprised of ethylene glycol with 5 wt% of NH4F and 5 wt% of H2O2. In order to enhance the visible light absorption and photoelectrochemical response of pure TiO2 nanotube arrays, a mixed oxide system (W-TiO2) was investigated. W-TiO2 nanotube arrays were prepared using radio-frequency (RF) sputtering to incorporate the W into the lattice of TiO2 nanotube arrays. The W atoms occupy the substitutional position within the vacancies of TiO2 nanotube arrays. The as-anodized TiO2 is amorphous in nature while the annealed TiO2 is anatase phase. The mixed oxide (W-TiO2) system in suitable TiO2 phase plays important roles in efficient electron transfers due to the reduction in electron-hole recombination. In this article, the effect of the sputtered W into the as-anodized/annealed TiO2 nanotube arrays on the photoelectrochemical response was presented.
  19. Lai CW, Samsudin NA, Low FW, Abd Samad NA, Lau KS, Chou PM, et al.
    Materials (Basel), 2020 Jun 03;13(11).
    PMID: 32503128 DOI: 10.3390/ma13112533
    In this present work, we report the deposition of cadmium selenide (CdSe) particles on titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at low deposition temperatures ranging from 20 to 60 °C. The deposition temperature had an influence on the overall CdSe-TiO2 nanotube thin film morphologies, chemical composition, phase transition, and optical properties, which, in turn, influenced the photoelectrochemical performance of the samples that were investigated. All samples showed the presence of CdSe particles in the TiO2 nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function of deposition temperature. Interestingly, a significant enhancement in photocurrent density was observed for the CdSe-TiO2 nanotube thin films deposited at 20 °C with a photocurrent density of 1.70 mA cm-2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus, an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube thin films, the CdSe-TiO2 nanotube thin films deposited at 20 °C showed the highest photocurrent density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical performance of the sample.
  20. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links