Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Yeong KY, Tan SC, Mai CW, Leong CO, Chung FF, Lee YK, et al.
    Chem Biol Drug Des, 2018 01;91(1):213-219.
    PMID: 28719017 DOI: 10.1111/cbdd.13072
    Both sirtuin and poly(ADP-ribose)polymerase (PARP) family of enzymes utilize NAD+ as co-substrate. Inhibitors of sirtuins and PARPs are important tools in drug discovery as they are reported to be linked to multiple diseases such as cancer. New potent sirtuin inhibitors (2,4,6-trisubstituted benzimidazole) were discovered from reported PARP inhibitor scaffold. Interestingly, the synthesized compounds have contrasting sirtuin and PARP-1 inhibitory activities. We showed that modification on benzimidazoles may alter their selectivity toward sirtuin or PARP-1 enzymes. This offers an opportunity for further discovery and development of new promising sirtuin inhibitors. Molecular docking studies were carried out to aid the rationalization of these observations. Preliminary antiproliferative studies of selected compounds against nasopharyngeal cancer cells also showed relatively promising results.
  2. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
  3. Siak PY, Khoo AS, Leong CO, Hoh BP, Cheah SC
    Cancers (Basel), 2021 Jul 12;13(14).
    PMID: 34298701 DOI: 10.3390/cancers13143490
    Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein-Barr virus infection, individual's genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
  4. Su ZY, Siak PY, Leong CO, Cheah SC
    Front Microbiol, 2023;14:1116143.
    PMID: 36846758 DOI: 10.3389/fmicb.2023.1116143
    Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
  5. Lim CK, Gan SY, Yi V, Jong M, Leong CO, Mai CW, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):2183-2187.
    PMID: 31813886
    Phytochemical investigation on the dichloromethane stem bark extract of Calophyllum castaneum resulted in the isolation of five compounds, namely isoblancoic acid (1), blancoic acid (2), euxanthone (3), friedelin (4) and friedelinol (5). All these compounds were isolated for the first time from this plant. Their chemical structures were elucidated based on the spectroscopic analyses. The cytotoxicity of compounds 1-5 was assessed on a panel of cancer cell lines including bone (Saos-2, mg63), colorectal (HT29, Caco-2, HCC2998, SW48, HCT116, KM12), liver (HepG2), lung (H1299, Calu-3), and brain (C6), using 5-fluorouracil as positive control. Pronounced antiproliferative activities were observed for compound 1 which exhibited a comparable activity with the positive control, against brain (C6) and colorectal (SW48, KM12, HCT116) cancer cell lines showing IC50 values in the range of 14 to 65μM. Meanwhile, compound 5 displayed a greater cytotoxic effect showing at least 2-fold more strongly than the positive control, against C6 brain cancer cells. The assay findings have unveiled the therapeutic value of phytochemicals from Calophyllum castaneum as anti-cancer agents.
  6. Murthy S, Hazli UHAM, Kong KW, Mai CW, Leong CO, Rahman NA, et al.
    Curr Org Synth, 2019;16(8):1166-1173.
    PMID: 31984923 DOI: 10.2174/1570179416666191003095253
    BACKGROUND: Sesamol is a widely used antioxidant for the food and pharmaceutical industries. The oxidation products of this compound may be accumulated in foods or ingested. Little is known about its effect on human health.

    OBJECTIVE: It is of great interest to identify the oxidation products of sesamol that may be beneficial to humans. This study was undertaken to identify the oxidation products of sesamol and investigate their antioxidant and cytotoxic activities.

    MATERIALS AND METHODS: Using the ferricyanide oxidation approach, four oxidation products of sesamol (2, 3, 20 & 21) have been identified. Structural elucidation of these compounds was established on the basis of their detailed NMR spectroscopic analysis, mass spectrometry and x-ray crystallography. Additionally, a formation mechanism of compound 20 was proposed based on high-resolution mass spectrometry-fragmentation method. The antioxidant activities of these compounds were determined by the DPPH, FRAP, and ABTS assays. The in vitro antiproliferative activity of these compounds was evaluated against a panel of human cancer cell lines as well as non-cancerous cells.

    RESULTS: Two oxidation products of sesamol were found to contain an unusual methylenedioxy ring-opening skeleton, as evidenced by spectroscopic and x-ray crystallographic data. Among all compounds, 20 displayed impressive antiproliferative activities against a panel of human cancer cell lines yet remained non-toxic to noncancerous cells. The antioxidant activities of compound 20 are significantly weaker than sesamol as determined by the DPPH, FRAP, and ABTS assays.

    CONCLUSION: The oxidation products of sesamol could be a valuable source of bioactive molecules. Compound 20 may be used as a potential lead molecule for cancer studies.

  7. Aminuddin A, Ng PY, Leong CO, Chua EW
    Sci Rep, 2020 May 12;10(1):7885.
    PMID: 32398775 DOI: 10.1038/s41598-020-64664-3
    Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
  8. Pua LJW, Mai CW, Chung FF, Khoo AS, Leong CO, Lim WM, et al.
    Int J Mol Sci, 2022 Jan 20;23(3).
    PMID: 35163030 DOI: 10.3390/ijms23031108
    c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) family members integrate signals that affect proliferation, differentiation, survival, and migration in a cell context- and cell type-specific way. JNK and p38 MAPK activities are found upregulated in nasopharyngeal carcinoma (NPC). Studies have shown that activation of JNK and p38 MAPK signaling can promote NPC oncogenesis by mechanisms within the cancer cells and interactions with the tumor microenvironment. They regulate multiple transcription activities and contribute to tumor-promoting processes, ranging from cell proliferation to apoptosis, inflammation, metastasis, and angiogenesis. Current literature suggests that JNK and p38 MAPK activation may exert pro-tumorigenic functions in NPC, though the underlying mechanisms are not well documented and have yet to be fully explored. Here, we aim to provide a narrative review of JNK and p38 MAPK pathways in human cancers with a primary focus on NPC. We also discuss the potential therapeutic agents that could be used to target JNK and p38 MAPK signaling in NPC, along with perspectives for future works. We aim to inspire future studies further delineating JNK and p38 MAPK signaling in NPC oncogenesis which might offer important insights for better strategies in diagnosis, prognosis, and treatment decision-making in NPC patients.
  9. Bihud NV, Rasol NE, Imran S, Awang K, Ahmad FB, Mai CW, et al.
    J Nat Prod, 2019 09 27;82(9):2430-2442.
    PMID: 31433181 DOI: 10.1021/acs.jnatprod.8b01067
    Eight new bis-styryllactones, goniolanceolatins A-H (1-8), possessing a rare α,β-unsaturated δ-lactone moiety with a (6S)-configuration, were isolated from the CH2Cl2 extract of the stembark and roots of Goniothalamus lanceolatus Miq., a plant endemic to Malaysia. Absolute structures were established through extensive 1D- and 2D-NMR data analysis, in combination with electronic dichroism (ECD) data. All of the isolates were evaluated for their cytotoxicity against human lung and colorectal cancer cell lines. Compounds 2 and 4 showed cytotoxicity, with IC50 values ranging from 2.3 to 4.2 μM, and were inactive toward human noncancerous lung and colorectal cells. Compounds 1, 3, 6, 7, and 8 showed moderate to weak cytotoxicity. Docking studies of compounds 2 and 4 showed that they bind with EGFR tyrosine kinase and cyclin-dependent kinase 2 through hydrogen bonding interactions with the important amino acids, including Lys721, Met769, Asn818, Arg157, Ile10, and Glu12.
  10. Voon YL, Ahmad M, Wong PF, Husaini R, Ng WT, Leong CO, et al.
    Oncol Rep, 2015 Oct;34(4):1692-700.
    PMID: 26252575 DOI: 10.3892/or.2015.4177
    The small-molecule inhibitor of p53-Mdm2 interaction, Nutlin-3, is known to be effective against cancers expressing wild-type (wt) p53. p53 mutations are rare in nasopharyngeal carcinoma (NPC), hence targeting disruption of p53-Mdm2 interaction to reactivate p53 may offer a promising therapeutic strategy for NPC. In the present study, the effects of Nutlin-3 alone or in combination with cisplatin, a standard chemotherapeutic agent, were tested on C666-1 cells, an Epstein-Barr virus (EBV)-positive NPC cell line bearing wt p53. Treatment with Nutlin-3 activated the p53 pathway and sensitized NPC cells to the cytotoxic effects of cisplatin. The combined treatment also markedly suppressed soft agar colony growth formation and increased apoptosis of NPC cells. The effect of Nutlin-3 on NPC cells was inhibited by knockdown of p53, suggesting that its effect was p53-dependent. Extended treatment with increasing concentrations of Nutlin-3 did not result in emergence of p53 mutations in the C666-1 cells. Collectively, the present study revealed supportive evidence of the effectiveness of combining cisplatin and Nutlin-3 as a potential therapy against NPC.
  11. Chan HH, Leong YQ, Voon SM, Pan ML, Leong CO, Lim CL, et al.
    Rep Biochem Mol Biol, 2021 Jan;9(4):417-425.
    PMID: 33969135 DOI: 10.52547/rbmb.9.4.417
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells.

    Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.

    Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.

    Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

  12. Chan HH, Leong CO, Lim CL, Koh RY
    J Cell Mol Med, 2022 Feb 02.
    PMID: 35106914 DOI: 10.1111/jcmm.17095
    Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor-interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain-like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta-amyloid (Aβ)-induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH-SY5Y human neuroblastoma cells treated with Aβ 1-40 or Aβ 1-42. We showed that Aβ-induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL-dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ-induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1-MLKL-dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.
  13. Tiong KH, Mah LY, Leong CO
    Apoptosis, 2013 Dec;18(12):1447-68.
    PMID: 23900974 DOI: 10.1007/s10495-013-0886-7
    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
  14. Tan BS, Tiong KH, Muruhadas A, Randhawa N, Choo HL, Bradshaw TD, et al.
    Mol. Cancer Ther., 2011 Oct;10(10):1982-92.
    PMID: 21831963 DOI: 10.1158/1535-7163.MCT-11-0391
    Both 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F-203; NSC 703786) and 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610; NSC 721648) are antitumor agents with novel mechanism(s). Previous studies have indicated that cytochrome (CYP) P450 1A1 is crucial for 5F-203 activity. In the present study, we investigated the functional role of 2 newly identified CYP P450 enzymes, CYP2S1 and CYP2W1, in mediating antitumor activity of benzothiazole compounds. We generated isogenic breast cancer (MDA-MB-468, MCF-7) and colorectal cancer (CRC; KM12 and HCC2998) cell lines depleted for CYP1A1, CYP2S1, or CYP2W1. The sensitivity of these cells to 5F-203 and GW-610 was then compared with vector control cells. 5F-203 exhibited potent activity against breast cancer cells, whereas GW-610 was effective against both breast and colorectal cancer cells. CYP1A1 was induced in both breast cancer and CRC cells, while CYP2S1 and CYP2W1 were selectively induced in breast cancer cells only following treatment with 5F-203 or GW-610. Depletion of CYP1A1 abrogated the sensitivity of breast cancer and CRC cells to 5F-203 and GW-610. Although depletion of CYP2S1 sensitized both breast cancer and CRC cells toward 5F-203 and GW-610, CYP2W1 knockdown caused marked resistance to GW-610 in CRC cells. Our results indicate that CYP-P450 isoforms, with the exception of CYP1A1, play an important role in mediating benzothiazole activity. CYP2S1 appears to be involved in deactivation of benzothiazoles, whereas CYP2W1 is important for bioactivation of GW-610 in CRC cells. Because CYP2W1 is highly expressed in colorectal tumors, GW-610 represents a promising agent for CRC therapy.
  15. Lim LY, Vidnovic N, Ellisen LW, Leong CO
    Br. J. Cancer, 2009 Nov 3;101(9):1606-12.
    PMID: 19773755 DOI: 10.1038/sj.bjc.6605335
    p53 is the most commonly mutated tumour-suppressor gene in human cancers. Unlike other tumour-suppressor genes, most p53 cancer mutations are missense mutations within the core domain, leading to the expression of a full-length mutant p53 protein. Accumulating evidence has indicated that p53 cancer mutants not only lose tumour suppression activity but also gain new oncogenic activities to promote tumourigenesis.
  16. Chung FF, Mai CW, Ng PY, Leong CO
    Curr Cancer Drug Targets, 2016;16(1):71-8.
    PMID: 26563883
    Cytochrome P450, family 2, subfamily W, polypeptide 1 (CYP2W1) is a newly identified monooxygenase enzyme that is expressed specifically in tumor tissues and during fetal life. Particularly, high expression of CYP2W1 was observed in up to 60% of colorectal cancers and its expression correlated with poor survival. CYP2W1 has been shown to metabolize various endogenous substrates including lysophospholipids and several procarcinogens, such as polycyclic aromatic hydrocarbon. The specific substrate for CYP2W1, however, is currently unknown. Due to its tumor-specific expression and its unique catalytic activities in colorectal cancers, CYP2W1 was deemed as an interesting target in colorectal cancer therapy. This review sought to summarize the current understanding of the CYP2W1 biology and biochemistry, its genetic polymorphisms and cancer risk, and its implication as a tumor-specific diagnostic and therapeutic target.
  17. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Oncotarget, 2016 Sep 06;7(36):57633-57650.
    PMID: 27192118 DOI: 10.18632/oncotarget.9328
    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
  18. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links