Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Tan FHP, Azzam G, Najimudin N, Shamsuddin S, Zainuddin A
    Mol Neurobiol, 2023 Aug;60(8):4716-4730.
    PMID: 37145377 DOI: 10.1007/s12035-023-03368-x
    Alzheimer's disease (AD) is the most common neurological ailment worldwide. Its process comprises the unique aggregation of extracellular senile plaques composed of amyloid-beta (Aβ) in the brain. Aβ42 is the most neurotoxic and aggressive of the Aβ42 isomers released in the brain. Despite much research on AD, the complete pathophysiology of this disease remains unknown. Technical and ethical constraints place limits on experiments utilizing human subjects. Thus, animal models were used to replicate human diseases. The Drosophila melanogaster is an excellent model for studying both physiological and behavioural aspects of human neurodegenerative illnesses. Here, the negative effects of Aβ42-expression on a Drosophila AD model were investigated through three behavioural assays followed by RNA-seq. The RNA-seq data was verified using qPCR. AD Drosophila expressing human Aβ42 exhibited degenerated eye structures, shortened lifespan, and declined mobility function compared to the wild-type Control. RNA-seq revealed 1496 genes that were differentially expressed from the Aβ42-expressing samples against the control. Among the pathways that were identified from the differentially expressed genes include carbon metabolism, oxidative phosphorylation, antimicrobial peptides, and longevity-regulating pathways. While AD is a complicated neurological condition whose aetiology is influenced by a number of factors, it is hoped that the current data will be sufficient to give a general picture of how Aβ42 influences the disease pathology. The discovery of molecular connections from the current Drosophila AD model offers fresh perspectives on the usage of this Drosophila which could aid in the discovery of new anti-AD medications.
  2. Goh JE, Rahman AY, Hari R, Lim MP, Najimudin N, Yap WS, et al.
    Microbiol Resour Announc, 2020 May 21;9(21).
    PMID: 32439681 DOI: 10.1128/MRA.01485-19
    A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.
  3. Teoh CP, Lavin P, Najimudin N, Lee PC, Iancu L, Purcarea C, et al.
    Microbiol Resour Announc, 2021 Feb 25;10(8).
    PMID: 33632855 DOI: 10.1128/MRA.00063-21
    Here, we report the draft genome sequence of Flavobacterium sp. strain PL002, isolated from Antarctic Porphyra algae. The 4,299,965-bp genome sequence is assembled into 170 contigs, has 32.92% GC content, and 3,734 predicted genes.
  4. Ching XJ, Najimudin N, Cheah YK, Wong CMVL
    Data Brief, 2022 Feb;40:107764.
    PMID: 35024395 DOI: 10.1016/j.dib.2021.107764
    Parageobacillus caldoxylosilyticus, or previously identified as Geobacillus caldoxylosilyticus, is a thermophilic Gram-positive bacterium which can easily withstand growth temperatures ranging from 40 °C to 70 °C. Here, we present the first complete genome sequence of Parageobacillus caldoxylosilyticus ER4B which was isolated from an empty oil palm fruit bunch compost in Malaysia. Whole genome sequencing was performed using the PacBio RSII platform. The genome size of strain ER4B was around 3.9Mbp, with GC content of 44.31%. The genome consists of two contigs, in which the larger contig (3,909,276bp) represents the chromosome, while the smaller one (54,250bp) represents the plasmid. A total of 4,164 genes were successfully predicted, including 3,972 protein coding sequences, 26 rRNAs, 91 tRNAs, 74 miscRNA, and 1 tmRNA. The genome sequence data of strain ER4B reported here may contribute to the current molecular information of the species. It may also facilitate the discovery of molecular traits related to thermal stress, thus, expanding our understanding in the acclimation or adaptation towards extreme temperature in bacteria.
  5. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
  6. Chew CH, Samian MR, Najimudin N, Tengku-Muhammad TS
    Biochem Biophys Res Commun, 2003 May 30;305(2):235-43.
    PMID: 12745064
    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcriptional factor that governs many biological processes, including lipid metabolism, inflammation, and atherosclerosis. We demonstrate here the existence of six variants and multiple transcriptional start sites of the 5(') untranslated region (UTR) of hPPARalpha gene, originating from the use of alternative splicing mechanisms and four different promoters. Three new novel exons at the 5(')-untranslated region of human PPARalpha gene were also identified and designated as Exon A, Exon B, and Exon 2b. In addition, 1.2kb promoter fragment which drives the transcription of 2 variants with Exon B (hPPARalpha4 and 6) was successfully cloned and characterised. Sequencing results revealed promoter B did not contain a conservative TATA box within the first 100 nucleotides from transcriptional start site but has several GC-rich regions and putative Sp1 sites. Using luciferase reporter constructs transfected into HepG2 and Hep3B cell lines, promoter B was shown to be functionally active. Basal transcriptional activity was significantly high in the promoter fragment -341/+34, but lower in the region -341/-1147 as compared to the fragment -341/+34, indicating the presence of an element conferring transcriptional activation between positions -341 and +34 or alternatively, the presence of transcriptional repression between positions -341 and -1147 in the promoter B of hPPARalpha.
  7. Khoo BY, Samian MR, Najimudin N, Tengku Muhammad TS
    PMID: 12524031
    The coding region of guinea pig peroxisome proliferator activated receptor gamma1 (gpPPARgamma1) cDNA was successfully cloned from adipose tissue by reverse transcription polymerase chain reaction (RT-PCR) using the designated primers based on the conserved regions of the other mammalian PPARgamma1 sequence. From RT-PCR, a combination of three cDNA fragments that comprised of the full length coding region PPARgamma1 cDNA gene were amplified, with the size of 498, 550 and 557 bp, respectively. All three fragments were then successfully assembled by utilising the internal restriction sites present at the overlapping regions to give rise to the full-length coding region of gpPPARgamma1 with the size of 1428 bp and consisting of 475 amino acids. Guinea pig PPARgamma1 is highly conserved with those of other species at protein and nucleotide levels. Gene expression studies showed that gpPPARgamma mRNA was predominantly expressed in adipose tissue followed by lung and spleen. However, at the protein level, PPARgamma was also found to be expressed in skeletal muscle.
  8. Tan ML, Muhammad TS, Najimudin N, Sulaiman SF
    J Ethnopharmacol, 2005 Jan 15;96(3):375-83.
    PMID: 15619555
    Epipremnum pinnatum (L.) Engl. hexane extract produced a significant growth inhibition against T-47D breast carcinoma cells and analysis of cell death mechanisms indicated that the extract elicited a non-apoptotic programmed cell death. T-47D cells exposed to the extract at EC(50) concentration (72 h) for 24 h failed to demonstrate typical DNA fragmentation associated with apoptosis, as carried out using a modified TUNEL assay. In addition, acute exposure to the extract produced an insignificant regulation of caspase-3 and p53 mRNA expression but increased in the c-myc mRNA expression. Ultrastructural analysis using transmission electron microscope demonstrated distinct vacuolated cells, which strongly indicated a Type II non-apoptotic cell death although the changes in chromatin were also detected. The presence of non-apoptotic programmed cell death was then reconfirmed with annexin-V and propidium iodide staining. These findings suggested that up-regulation of c-myc mRNA expression may have contributed to the growth arrest and Type II non-apoptotic programmed cell death in the Epipremnum pinnatum (L.) Engl. hexane extract-treated T-47D cells.
  9. Jau MH, Yew SP, Toh PS, Chong AS, Chu WL, Phang SM, et al.
    Int J Biol Macromol, 2005 Aug;36(3):144-51.
    PMID: 16005060
    Three strains of Spirulina platensis isolated from different locations showed capability of synthesizing poly(3-hydroxybutyrate) [P(3HB)] under nitrogen-starved conditions with a maximum accumulation of up to 10 wt.% of the cell dry weight (CDW) under mixotrophic culture conditions. Intracellular degradation (mobilization) of P(3HB) granules by S. platensis was initiated by the restoration of nitrogen source. This mobilization process was affected by both illumination and culture pH. The mobilization of P(3HB) was better under illumination (80% degradation) than in dark conditions (40% degradation) over a period of 4 days. Alkaline conditions (pH 10-11) were optimal for both biosynthesis and mobilization of P(3HB) at which 90% of the accumulated P(3HB) was mobilized. Transmission electron microscopy (TEM) revealed that the mobilization of P(3HB) involved changes in granule quantity and morphology. The P(3HB) granules became irregular in shape and the boundary region was less defined. In contrast to bacteria, in S. platensis the intracellular mobilization of P(3HB) seems to be faster than the biosynthesis process. This is because in cyanobacteria chlorosis delays the P(3HB) accumulation process.
  10. Tai YT, Foong CP, Najimudin N, Sudesh K
    J Biosci Bioeng, 2016 Apr;121(4):355-64.
    PMID: 26467694 DOI: 10.1016/j.jbiosc.2015.08.008
    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated.
  11. Nanthini J, Chia KH, Thottathil GP, Taylor TD, Kondo S, Najimudin N, et al.
    J Biotechnol, 2015 Nov 20;214:47-8.
    PMID: 26376470 DOI: 10.1016/j.jbiotec.2015.09.007
    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.
  12. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
  13. Ismail A, Teh LK, Ngeow YF, Norazmi MN, Zainul ZF, Tang TH, et al.
    Genome Announc, 2013;1(3).
    PMID: 23788553 DOI: 10.1128/genomeA.00397-13
    We report the annotated genome sequence of a clinical isolate, Mycobacterium tuberculosis strain PR05, which was isolated from the human cerebrospinal fluid of a patient diagnosed with tuberculosis.
  14. Choi SB, Choong YS, Saito A, Wahab HA, Najimudin N, Watanabe N, et al.
    Mol Inform, 2014 Dec;33(11-12):742-8.
    PMID: 27485420 DOI: 10.1002/minf.201400080
    Present HIV antiviral therapy only targets structural proteins of HIV, but evidence shows that the targeting of accessory proteins will expand our options in combating HIV. HIV-1 Vpr, a multifunctional accessory protein involved in viral infection, replication and pathogenesis, is a potential target. Previously, we have shown that phenyl coumarin compounds can inhibit the growth arrest activity of Vpr in host cells and predicted that the inhibitors' binding site is a hydrophobic pocket on Vpr. To investigate our prediction of the inhibitors' binding site, we docked the coumarin inhibitors into the predicted hydrophobic binding pocket on a built model of Vpr and observed a linear trend between their calculated binding energies and prior experimentally determined potencies. Subsequently, to analyze the inhibitor-protein binding interactions in detail, we built homology models of Vpr mutants and performed docking studies on these models too. The results revealed that structural changes on the binding pocket that were caused by the mutations affected inhibitor binding. Overall, this study showed that the binding energies of the docked molecules are good indicators of the activity of the inhibitors. Thus, the model can be used in virtual screening to identify other Vpr inhibitors and for designing more potent inhibitors.
  15. Teh BA, Choi SB, Musa N, Ling FL, Cun ST, Salleh AB, et al.
    BMC Struct Biol, 2014;14:7.
    PMID: 24499172 DOI: 10.1186/1472-6807-14-7
    Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.
  16. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
  17. Wahab HA, Yam WK, Samian MR, Najimudin N
    J Biomol Struct Dyn, 2008 Aug;26(1):131-46.
    PMID: 18533733
    Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.
  18. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
  19. Halim MA, Rahman AY, Sim KS, Yam HC, Rahim AA, Ghazali AH, et al.
    Genome Announc, 2016;4(1).
    PMID: 26893411 DOI: 10.1128/genomeA.00005-16
    Here, we report the complete genome sequence of Paenibacillus durus type strain ATCC 35681, which can fix atmospheric nitrogen even in the presence of nitrate.
  20. Yam H, Abdul Rahim A, Gim Luan O, Samian R, Abdul Manaf U, Mohamad S, et al.
    Protein J, 2012 Mar;31(3):246-9.
    PMID: 22354666 DOI: 10.1007/s10930-012-9398-5
    In this post genomic era, there are a great number of in silico annotated hypothetical genes. However, experimental validation of the functionality of these genes remains tentative. Two of the major challenges faced by researcher are whether these hypothetical genes are protein-coding genes and whether their corresponding predicted translational start codons are correct. In this report, we demonstrate a convenient procedure to validate the presence of a hypothetical gene product of BPSS1356 from Burkholderia pseudomallei as well as its start codon. It was done by integration of a His-Tag coding sequence into C-terminal end of BPSS1356 gene via homologous recombination. We then purified the native protein using affinity chromatography. The genuine start codon of BPSS1356 was then determined by protein N-terminal sequencing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links