Displaying all 13 publications

Abstract:
Sort:
  1. Noh NA
    Malays J Med Sci, 2016 Jul;23(4):5-16.
    PMID: 27660540 MyJurnal DOI: 10.21315/mjms2016.23.4.2
    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.
  2. Noh NA, Fuggetta G, Manganotti P
    Malays J Med Sci, 2015 Dec;22(Spec Issue):36-44.
    PMID: 27006636 MyJurnal
    Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain.
  3. Cheng S, Thinagaran D, Mohanna SZ, Noh NA
    Environ Entomol, 2014 Aug;43(4):1105-16.
    PMID: 24915136 DOI: 10.1603/EN13318
    Coptotermes gestroi (Wasmann) or the Asian subterranean termite is a serious structural pest in urban settlements in Southeast Asia that has been introduced to other parts of the world through human commerce. Although mitochondrial DNA markers were previously used to shed light on the dispersal history of the Asian subterranean termite, there were limited attempts to analyze or include populations of the termite found in the wild in Southeast Asia. In this study, we analyzed the 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit 1 (cox1) genes of Asian subterranean termite colonies found in mangrove swamps, beach forests, plantations, and buildings in semi-urban and urban areas to determine the relationship between colonies found in the wild and the urban habitat, and to investigate the possibility of different ecotypes of the termite in Peninsular Malaysia. Our findings show that the 16S rRNA haplotypes recovered from this study clustered into eastern, western, and southern populations of the termite, while the cox1 haplotypes were often specific to an area or site. The 16S rRNA and cox1 genes or haplotypes showed that the most abundant haplotype occupied a wide range of environments or habitats. In addition, the cox1 tree showed evidence of historical biogeography where basal haplotypes inhabited a wide range of habitats, while apical haplotypes were restricted to mangrove swamps and beach forests. Information on the haplotype-habitat association of C. gestroi will enable the prediction of habitats that may harbor or be at risk of invasion in areas where they have been introduced.
  4. Noh NA, Salleh SM, Yahya AR
    Lett Appl Microbiol, 2014 Jun;58(6):617-23.
    PMID: 24698293 DOI: 10.1111/lam.12236
    A fed-batch strategy was established based on the maximum substrate uptake rate (MSUR) of Pseudomonas aeruginosa USM-AR2 grown in diesel to produce rhamnolipid. This strategy matches the substrate feed rates with the substrate demand based on the real-time measurements of dissolved oxygen (DO). The MSUR was estimated by determining the time required for consumption of a known amount of diesel. The MSUR trend paralleled the biomass profile of Ps. aeruginosa USM-AR2, where the MSUR increased throughout the exponential phase indicating active substrate utilization and then decreased when cells entered stationary phase. Rhamnolipid yield on diesel was enhanced from 0·047 (g/g) in batch to 0·110 (g/g) in pulse-pause fed-batch and 0·123 (g/g) in MSUR fed-batch. Rhamnolipid yield on biomass was also improved from 0·421 (g/g) in batch, 3·098 (g/g) in pulse-pause fed-batch to 3·471 (g/g) using MSUR-based strategy. Volumetric productivity increased from 0·029 g l(-1) h(-1) in batch, 0·054 g l(-1) h(-1) in pulse-pause fed-batch to 0·076 g l(-1) h(-1) in MSUR fed-batch.
  5. Zambry NS, Ayoib A, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2017 Jul;40(7):1007-1016.
    PMID: 28389850 DOI: 10.1007/s00449-017-1764-4
    The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h-1) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L-1, characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20-121 °C), pH (2-12) and salinity [5-20% (w/v) of NaCl].
  6. Nasir MS, Mohd Yahya AR, Md Noh NA
    Trop Life Sci Res, 2024 Mar;35(1):33-47.
    PMID: 39262861 DOI: 10.21315/tlsr2024.35.1.3
    Rhamnolipid has gained much attention in various fields owing to its distinctive functional properties compared to conventional chemical surfactants, which are mostly derived from petroleum feedstock. Production cost is one of the main challenges in rhamnolipid production, particularly when using refined substrates. One possible solution is to use agro-industrial wastes as substrates for rhamnolipid production. This is a promising strategy due to their abundance and commercially low value, while simultaneously alleviating an agro-industrial waste management problem in the environment. This study aims to evaluate agro-industrial wastes from local crops as possible low-cost alternative substrates for rhamnolipid production by a local isolate, Pseudomonas aeruginosa USM-AR2. Various liquid wastes, namely sugarcane molasses, rice washing water, overly mature coconut (OMC) water, empty fruit bunch (EFB) steam effluent, palm sludge oil (PSO) and palm oil mill effluent (POME) were screened as the main carbon source supplementing mineral salt medium (MSM) in the fermentation of P. aeruginosa USM-AR2. Batch fermentation was carried out in a shake flask system, agitated at 200 rpm and incubated at room temperature, 27 ± 2°C for 120 h. Among the substrates tested, PSO exhibited the highest biomass at 20.78 g/L and rhamnolipid production at 1.07 g/L. This study has shown the potential of agro-industrial wastes in Malaysia as an alternative resource for rhamnolipid production, transforming them into value added products, while reducing the amount of wastes discharged into the environment.
  7. Noh NA, Wahab HA, Bakar Ah SH, Islam MR
    Soc Work Public Health, 2016 Aug-Sep;31(5):419-30.
    PMID: 27177326 DOI: 10.1080/19371918.2015.1125321
    The objective of this study was to know the status of the foreign workers' access to public health services in Malaysia based on their utilization pattern. The utilization pattern covered a number of areas, such as frequency of using health services, status of using health services, choice and types of health institutions, and cost of health treatment. The study was conducted on six government hospitals in the Klang Valley area in Kuala Lumpur, Malaysia. Data were collected from 600 foreign patients working in the country, using an interview method with a structured questionnaire. The results showed that the foreign workers' access to public health services was very low. The findings would be an important guideline to formulate an effective health service policy for the foreign workers in Malaysia.
  8. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
  9. Idris MO, Mohamad Ibrahim MN, Md Noh NA, Yaqoob AA, Hussin MH, Mohamad Shukri IA, et al.
    Chemosphere, 2023 Nov;340:139985.
    PMID: 37640217 DOI: 10.1016/j.chemosphere.2023.139985
    Naphthalene is a very common and hazardous environmental pollutant, and its biodegradation has received serious attention. As demonstrated in this study, naphthalene-contaminated wastewater can be biodegraded using a microbial fuel cell (MFC). Furthermore, the potential of MFC for electricity generation appears to be a promising technology to meet energy demands other than those produced from fossil fuels. Nowadays, efforts are being made to improve the overall performance of MFC by integrating biowaste materials for anode fabrication. In this study, palm kernel shell waste was used to produce palm kernel shell-derived graphene oxide (PKS-GO) and palm kernel shell-derived reduced graphene oxide (PKS-rGO), which were then fabricated into anode electrodes to improve the system's electron mobilization and transport. The MFC configuration with the PKS-rGO anode demonstrated greater energy production potential, with a maximum power density of 35.11 mW/m2 and a current density of 101.76 mA/m2, compared to the PKS-GO anode, which achieved a maximum power density of 17.85 mW/m2 and a current density of 72.56 mA/m2. Furthermore, there is simultaneous naphthalene biodegradation with energy production, where the biodegradation efficiency of naphthalene with PKS-rGO and PKS-GO is 85.5%, and 79.7%, respectively. In addition, the specific capacitance determined from the cyclic voltammetry curve revealed a value for PKS-rGO of 2.23 × 10-4 F/g, which is also higher than the value for PKS-GO (1.57 × 10-4 F/g) on the last day of operation. Anodic microbial analysis shows that electrogens thrive in the MFC process. Finally, a comparison with previous literature and the future prospects of the study are also presented.
  10. Murugaiah H, Teh CL, Loh KC, Mohamad Yahya AR, Md Noh NA, Abu Bakar NHH, et al.
    Molecules, 2021 Oct 24;26(21).
    PMID: 34770823 DOI: 10.3390/molecules26216414
    Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs' antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel's properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.
  11. Abu Bakar ZH, Damanhuri HA, Makpol S, Wan Kamaruddin WMA, Abdul Sani NF, Amir Hamzah AIZ, et al.
    J Alzheimers Dis, 2019;70(s1):S43-S62.
    PMID: 30594926 DOI: 10.3233/JAD-180511
    BACKGROUND: Many studies on biochemical and psychological variables have aimed to elucidate the association between aging and cognitive function. Demographic differences and protein expression have been reported to play a role in determining the cognitive capability of a population.

    OBJECTIVE: This study aimed to determine the effect of age on the protein profile of Malay individuals and its association with cognitive competency.

    METHODS: A total of 160 individuals were recruited and grouped accordingly. Cognitive competency of each subject was assessed with several neuropsychological tests. Plasma samples were collected and analyzed with Q Exactive HF Orbitrap. Proteins were identified and quantitated with MaxQuant and further analyzed with Perseus to determine differentially expressed proteins. PANTHER, Reactome, and STRING were applied for bioinformatics output.

    RESULTS: Our data showed that the Malay individuals are vulnerable to the deterioration of cognitive function with aging, and most of the proteins were differentially expressed in concordance. Several physiological components and pathways were shown to be involved, giving a hint of a promising interpretation on the induction of aging toward the state of the Malays' cognitive function. Nevertheless, some proteins have shown a considerable interaction with the generated protein network, which provides a direction of focus for further investigation.

    CONCLUSION: This study demonstrated notable changes in the expression of several proteins as age increased. These changes provide a promising platform for understanding the biochemical factors affecting cognitive function in the Malay population. The exhibited network of protein-protein interaction suggests the possibility of implementing regulatory intervention in ameliorating Malay cognitive function.

  12. Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, et al.
    Free Radic Res, 2018 Sep;52(9):1000-1009.
    PMID: 30079776 DOI: 10.1080/10715762.2018.1506877
    Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
  13. Tan JK, Zakaria SNA, Gunasekaran G, Abdul Sani NF, Nasaruddin ML, Jaafar F, et al.
    Oxid Med Cell Longev, 2023;2023:4416410.
    PMID: 36785791 DOI: 10.1155/2023/4416410
    Aging is a complex process characterized by progressive loss of functional abilities due to the accumulation of molecular damages. Metabolomics could offer novel insights into the predictors and mechanisms of aging. This cross-sectional study is aimed at identifying age-associated plasma metabolome in a Malay population. A total of 146 (90 females) healthy participants aged 28-69 were selected for the study. Untargeted metabolomics profiling was performed using liquid chromatography-tandem mass spectrometry. Association analysis was based on the general linear model. Gender-associated metabolites were adjusted for age, while age-associated metabolites were adjusted for gender or analyzed in a gender-stratified manner. Gender-associated metabolites such as 4-hydroxyphenyllactic acid, carnitine, cortisol, and testosterone sulfate showed higher levels in males than females. Deoxycholic acid and hippuric acid were among the metabolites with a positive association with age after being adjusted for gender, while 9(E),11(E)-conjugated linoleic acid, cortisol, and nicotinamide were negatively associated with age. In gender-stratified analysis, glutamine was one of the common metabolites that showed a direct association with age in both genders, while metabolites such as 11-deoxy prostaglandin F2β, guanosine monophosphate, and testosterone sulfate were inversely associated with age in males and females. This study reveals several age-associated metabolites in Malays that could reflect the changes in metabolisms during aging and may be used to discern the risk of geriatric syndromes and disorders later. Further studies are required to determine the interplay between these metabolites and environmental factors on the functional outcomes during aging.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links