Displaying publications 1 - 20 of 170 in total

Abstract:
Sort:
  1. Zainal Abidin S, Fam SZ, Chong CE, Abdullah S, Cheah PS, Nordin N, et al.
    Gene, 2019 May 20;697:201-212.
    PMID: 30769142 DOI: 10.1016/j.gene.2019.02.014
    MicroRNA-3099 is highly expressed during neuronal differentiation and development of the central nervous system. Here we characterised the role of miR-3099 during neural differentiation and embryonic brain development using a stable and regulatable mouse embryonic stem cell culture system for miR-3099 expression and in utero electroporation of miR-3099 expression construct into E15.5 embryonic mouse brains. In the in vitro system, miR-3099 overexpression upregulated gene related to neuronal markers such as Tuj1, NeuN, Gat1, vGluT1 and vGluT2. In contrast, gene related to astrocyte markers (Gfap, S100β and Slc1a3) were suppressed upon overexpression of miR-3099. Furthermore, miR-3099 overexpression between E15.5 and E18.5 mouse embryonic brains led to disorganised neuronal migration potentially due to significantly decreased Gfap+ cells. Collectively, our results indicated that miR-3099 plays a role in modulating and regulating expression of key markers involved in neuronal differentiation. In silico analysis was also performed to identify miR-3099 homologues in the human genome, and candidates were validated by stem-loop RT-qPCR. Analysis of the miR-3099 seed sequence AGGCUA against human transcriptomes revealed that a potential miRNA, mds21 (Chr21:39186698-39186677) (GenBank accession ID: MK521584), was 100% identical to the miR-3099 seed sequence. Mds21 expression was observed and validated in various human cell lines (293FT, human Wharton's jelly and dental pulp mesenchymal stem cells, and MCF-7, MDA-MB-231, C-Sert, SW780, RT112, 5637, EJ28 and SH-SY5Y cells), with the highest levels detected in human mesenchymal stem cell lines. The analysis validated mds21 as a novel miRNA and a novel homologue of miR-3099 in the human genome.
  2. Abd Jalil A, Khaza'ai H, Nordin N, Mansor N, Zaulkffali AS
    PMID: 29348770 DOI: 10.1155/2017/6048936
    Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer's disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP) in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES) cell cultures were elucidated. A transgenic mouse ES cell line (46C) was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS) was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.
  3. Ibrahim Y, Basri NI, Nordin N, Mohd Jamil AA
    JMIR Res Protoc, 2024 Mar 26;13:e53722.
    PMID: 38530345 DOI: 10.2196/53722
    BACKGROUND: Vitamin D deficiency has been associated with hypertensive disorders in pregnancy (HDP). The risk of developing HDP was reported to be further augmented among individuals with a vitamin D receptor (VDR) genetic variant. However, the reported roles of VDR variants in hypertensive disorders are inconsistent among different populations. Given the relatively higher incidence of vitamin D deficiency among Malaysian pregnant women and the high incidence of HDP in this population, we hypothesize that there may be associations between the risk of vitamin D deficiency and HDP with VDR genetic variants.

    OBJECTIVE: This paper outlines the protocol for a study to determine the association of vitamin D status and VDR sequence variants among Malaysian pregnant women with HDP.

    METHODS: This prospective study consists of two phases. The first phase is a cross-sectional study that will entail gathering medical records, a questionnaire survey, and laboratory testing for vitamin D status, with a planned recruitment of 414 pregnant women. The questionnaire will be utilized to assess the risk factors for vitamin D deficiency. The vitamin D status will be obtained from measurement of the vitamin D (25-hydroxyvitamin D3) level in the blood. The second phase is a case-control study involving a Malay ethnic cohort with vitamin D deficiency. Participants will be divided into two groups with and without HDP (n=150 per group). Genomic DNA will be extracted from the peripheral blood monocytes of participants using the Qiagen DNA blood kit, and VDR sequence variants will be determined using polymerase chain reaction-high-resolution melting (PCR-HRM) analysis. Sanger sequencing will then be used to sequence randomly selected samples corresponding to each identified variant to validate our PCR-HRM results. The VDR genotype and mutation frequencies of BsmI, ApaI, TaqI, and FokI will be statistically analyzed to evaluate their relationships with developing HDP.

    RESULTS: As of December 2023, 340 subjects have been recruited for the phase 1 study, 63% of whom were determined to have vitamin D deficiency. In the phase 2 study, 50 and 22 subjects have been recruited from the control and case groups, respectively. Recruitment is expected to be completed by March 2024 and all analyses should be completed by August 2024.

    CONCLUSIONS: The outcome of the study will identify the nonmodifiable genetic components contributing to developing vitamin D deficiency leading to HDP. This will in turn enable gaining a better understanding of the contribution of genetic variability to the development of HDP, thus providing more evidence for a need of customized vitamin D supplementation during pregnancy according to the individual variability in the response to vitamin D intake.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT05659173; https://clinicaltrials.gov/study/NCT05659173.

    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/53722.

  4. Yap KH, Ung WC, Ebenezer EGM, Nordin N, Chin PS, Sugathan S, et al.
    PMID: 28919856 DOI: 10.3389/fnagi.2017.00287
    Background: Cognitive performance is relatively well preserved during early cognitive impairment owing to compensatory mechanisms. Methods: We explored functional near-infrared spectroscopy (fNIRS) alongside a semantic verbal fluency task (SVFT) to investigate any compensation exhibited by the prefrontal cortex (PFC) in Mild Cognitive Impairment (MCI) and mild Alzheimer's disease (AD). In addition, a group of healthy controls (HC) was studied. A total of 61 volunteers (31 HC, 12 patients with MCI and 18 patients with mild AD) took part in the present study. Results: Although not statistically significant, MCI exhibited a greater mean activation of both the right and left PFC, followed by HC and mild AD. Analysis showed that in the left PFC, the time taken for HC to achieve the activation level was shorter than MCI and mild AD (p = 0.0047 and 0.0498, respectively); in the right PFC, mild AD took a longer time to achieve the activation level than HC and MCI (p = 0.0469 and 0.0335, respectively); in the right PFC, HC, and MCI demonstrated a steeper slope compared to mild AD (p = 0.0432 and 0. 0107, respectively). The results were, however, not significant when corrected by the Bonferroni-Holm method. There was also found to be a moderately positive correlation (R = 0.5886) between the oxygenation levels in the left PFC and a clinical measure [Mini-Mental State Examination (MMSE) score] in MCI subjects uniquely. Discussion: The hyperactivation in MCI coupled with a better SVFT performance may suggest neural compensation, although it is not known to what degree hyperactivation manifests as a potential indicator of compensatory mechanisms. However, hypoactivation plus a poorer SVFT performance in mild AD might indicate an inability to compensate due to the degree of structural impairment. Conclusion: Consistent with the scaffolding theory of aging and cognition, the task-elicited hyperactivation in MCI might reflect the presence of compensatory mechanisms and hypoactivation in mild AD could reflect an inability to compensate. Future studies will investigate the fNIRS parameters with a larger sample size, and their validity as prognostic biomarkers of neurodegeneration.
  5. Jamaludin J, Nordin NM, Mohamad N, Etta KM
    Malays J Reprod Health, 1988 Jun;6(1):65-9.
    PMID: 12281593
    Subcutaneous body fat and Quetelet's Indices (QI) of 52, 18-29 year old normal female volunteers were determined. These body mass indices were then grouped according to the phase of each subject's menstrual cycle, early or late follicular and early or late luteal phase. The subcutaneous body fat is 27.07 +or- 1.0% in the early follicular but drops to 24.68 +or- 1.84% in the late follicular phase. The value then rises significantly higher than that in the late follicular phase to 30.14 +or- 1.15% (P0.02) in the early luteal drops to 27.17 +or- 0.55% towards the level of the early follicular phase (P0.05). Variations in the values of QI during each menstrual cycle exactly mirror those for subcutaneous body fat. The fall in the 2 body mass indices during the late follicular phase coincides somewhat with the established preovulatory LH and FSH surges as well as the high levels of estrogen of this period. On the other hand the significant rise in the 2 parameters during the early luteal phase coincides with the marked rise in the ratio of progesterone to estrogen. Clearly, increased levels of progesterone relative to estrogen appear to cause an increase in the body fat during each menstrual cycle. The implication of this finding for women on contraceptive pills which are predominantly progesterone and those whose normal menstrual cycle is "interrupted" at the early luteal phase by a successful fertilization raises very interesting questions with regards to prediction of ovulation.
  6. Kiong TC, Nordin N, Ahmad Ruslan NAA, Kan SY, Ismail NM, Zakaria Z, et al.
    Environ Res, 2022 Oct;213:113737.
    PMID: 35752328 DOI: 10.1016/j.envres.2022.113737
    To keep COVID-19 at bay, most countries have mandated the use of face masks in public places and imposed heavy penalties for those who fail to do so. This has inadvertently created a huge demand for disposable face masks and worsened the problem of littering, where a large number of used masks are constantly discarded into the environment. As such, an efficient and innovative waste management strategy for the discarded face mask is urgently needed. This study presents the transformation of discarded face mask into catalyst termed 'mask waste ash catalyst (MWAC)' to synthesise bisindolylmethanes (BIMs), alkaloids that possess antibacterial, antioxidant and antiviral properties. Using commercially available aldehydes and indole, an excellent yield of reaction (62-94%) was achieved using the MWAC in the presence of water as the sole solvent. On the other hand, the FT-IR spectrum of MWAC showed the absorption bands at 2337 cm-1, 1415 cm-1 and 871 cm-1, which correspond to the signals of calcium oxide. It is then proposed that the calcium oxides mainly present in MWAC can protonate oxygen atoms in the carbonyl molecule of the aldehyde group, thus facilitating the nucleophile attack by indole which consequently improved the product yield. Moreover, the MWAC is also observed to facilitate the photodegradation of methylene blue with an efficiency of up to 94.55%. Our results showed the potential applications of the MWAC derived from discarded face masks as a sustainable catalyst for bioactive compound synthesis and photodegradation of dye compounds.
  7. Nordin N. N., Lau, C. L., Wan Mat W. R., Yow, H. Y.
    MyJurnal
    Introduction: The incidence of antimicrobial resistance (AMR) has increased worldwide including Malaysia, which may be attributed partly to inappropriate prescribing of antimicrobials. Antimicrobial prescribing form has been introduced to mandate appropriate antimicrobial prescription including documented indication as a key standard of antimicrobial stewardship practice. Hence, this current study aimed to determine the usage and completeness of the designated antimicrobial prescribing form that had been implemented in the General Intensive Care Unit (GICU), Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Methods: This prospective observational study was carried out in GICU UKMMC from 30 August 2018 to 30 November 2018 by convenience sampling. The information that was recorded in the antimicrobial prescribing form was collected by using the designated data collection form. A total of 68 patients were included and 205 antimicrobial prescribing forms were evaluated. Results: There were 100% usage of antimicrobial prescribing forms found in this study. However, only 81 ± 8 % of these forms were completely filled. Indication for the antimicrobial prescription was not filled in 47% of the forms. Almost two thirds of the antimicrobial prescriptions were empirically indicated and one percent de-escalation of antimicrobial therapy was filled in the forms. These prescriptions comprised of 91.7% antibiotics, 7.8% antifungals and 0.5% antivirals. The suspected site of infections were primarily from the lungs (27%), gastrointestinal (16%), blood (16%) and central nervous system (14%). Piperacillin/Tazobactam was the most frequent antibiotic prescribed (21%), followed by third and fourth generation cephalosporins (20%). Conclusion: This study provided an overview of the uptake of the antimicrobial prescribing form implementation and highlighted the requirement for supplementary efforts to maximize the compliance of this form.
  8. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2018 Oct;266:97-108.
    PMID: 29957296 DOI: 10.1016/j.biortech.2018.06.035
    This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
  9. Davoodi H, Nordin N, Munakata H, Korvink JG, MacKinnon N, Badilita V
    Sci Rep, 2021 04 08;11(1):7798.
    PMID: 33833324 DOI: 10.1038/s41598-021-87247-2
    The low frequency plateau in the frequency response of an untuned micro-resonator permits broadband radio-frequency reception, albeit at the expense of optimal signal-to-noise ratio for a particular nucleus. In this contribution we determine useful figures of merit for broadband micro-coils, and thereby explore the parametric design space towards acceptable simultaneous excitation and reception of a microfluidic sample over a wide frequency band ranging from 13C to 1H, i.e., 125-500 MHz in an 11.74 T magnet. The detector achieves 37% of the performance of a comparably sized, tuned and matched resonator, and a linewidth of 17 ppb using standard magnet shims. The use of broadband detectors circumvents numerous difficulties introduced by multi-resonant RF detector circuits, including sample loading effects on matching, channel isolation, and field distortion.
  10. Ibiyeye KM, Nordin N, Ajat M, Zuki ABZ
    Front Oncol, 2019;9:599.
    PMID: 31334120 DOI: 10.3389/fonc.2019.00599
    Background: Combination chemotherapy of anticancer drugs is extensively being researched since it could reduce multidrug resistance and side effects as a result of lower dosage of each drug. In this study, we evaluated the effects of doxorubicin-loaded (Dox-ACNP), thymoquinone-loaded (TQ-ACNP) and a combined doxorubicin/thymoquinone-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) on breast cancer cell line and compared with their free drugs counterpart. Methods: Cell viability using MTT assay, apoptosis with Annexin V-PI kit, morphological changes using contrast light microscope, scanning electron microscope and transmission electron microscope, cell cycle analysis, invasion assay, and scratch assay were carried out. The cell viability was evaluated in breast cancer cell line (MDA MB231), normal breast cells (MDF10A) and normal fibroblast (3T3). Results: MDA MB231 IC50 dosages of drug-loaded nanoparticle were not toxic to the normal cells. The combination therapy showed enhanced apoptosis, reduction in cellular migration and invasion when compared to the single drug-loaded nanoparticle and the free drugs. Scanning electron microscope showed presence of cell shrinkage, cell membrane blebbing, while transmission electron microscope showed nuclear fragmentation, disruption of cell membrane, apoptotic bodies, and disruption of mitochondrial cistern. Conclusion: The results from this study showed that the combined drug-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) showed higher efficacy in breast cancer cells at lower dose of doxorubicin and thymoquinone.
  11. Eliseus A, Bilad MR, Nordin NAHM, Khan AL, Putra ZA, Wirzal MDH, et al.
    J Environ Manage, 2018 Dec 15;228:529-537.
    PMID: 30273771 DOI: 10.1016/j.jenvman.2018.09.029
    Membrane fouling is a major challenge in membrane bioreactors (MBRs) and its effective handling is the key to improve their competitiveness. Tilting panel system offers significant improvements for fouling control but is strictly limited to one-sided panel. In this study, we assess a two-way switch tilting panel system that enables two-sided membranes and project its implications on performance and energy footprint. Results show that tilting a panel improves permeance by up to 20% to reach a plateau flux thanks to better contacts between air bubbles and the membrane surface to scour-off the foulant. A plateau permeance could be achieved at aeration rate of as low as 0.90 l min-1, a condition untenable by vertical panel even at twice of the aeration rate. Switching at short periods (<5min) can maintain the hydraulic performance as in no-switch (static system), enables application of a two-sided switching panel. A comparison of vertical panel under 1.80 l min-1 aeration rate with a switching panel at a half of the rate, switched at 1 min period shows ≈10% higher permeance of the later. Since periodic switching consumes a very low energy (0.55% of the total of 0.276 kWh m-3), with reduction of aeration by 50%, the switching tilted panel offers 41% more energy efficient than a referenced full-scale MBR (0.390 kWh m-3). Overall results are very compelling and highly attractive for significant improvements of MBR technologies.
  12. Lee HC, Hamzah H, Leong MP, Md Yusof H, Habib O, Zainal Abidin S, et al.
    Sci Rep, 2021 Feb 15;11(1):3847.
    PMID: 33589712 DOI: 10.1038/s41598-021-83222-z
    Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
  13. Eliseus A, Bilad MR, Nordin NAHM, Putra ZA, Wirzal MDH
    Bioresour Technol, 2017 Oct;241:661-668.
    PMID: 28609754 DOI: 10.1016/j.biortech.2017.05.175
    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application.
  14. Nordin, N., Razak, R. C.
    MyJurnal
    High quality of product and service is always demanded by customers. Conversely, poor
    quality of product and service will result with customer dissatisfaction. However, this linear
    relationship is no longer accurate due to the complexity nature of customer needs. Non-linear
    relationship should be considered for more accurate evaluation of customer needs. This paper
    presents a concept of Kano model and Quality Function Deployment (QFD) integration to evaluate
    the non-linearity of customer needs towards the quality of products or services. By a case study, the
    developed Kano-QFD model is validated with the theory of Kano model and found to have well
    agreement. Further application for product development is recommended for future research.
  15. Ab Rahim SN, Nordin N, Wan Omar WFA, Zulkarnain S, Kumar S, Sinha S, et al.
    Cureus, 2023 Dec;15(12):e49835.
    PMID: 38045630 DOI: 10.7759/cureus.49835
    Magnesium (Mg2+) is a predominantly intracellular cation that plays significant roles in various enzymatic, membrane, and structural body functions. As a calcium (Ca2+) antagonist, it is imperative for numerous neuromuscular activities. The imbalance of body Mg2+  concentration leads to clinical manifestations ranging from asymptomatic to severe life-threatening complications. Therefore, the contribution of Mg2+ measurement regarding various laboratory and clinical aspects cannot be ignored. Mg2+ is often described as the forgotten analyte. However, its close relationship with body potassium (K+), Ca2+, and phosphate homeostasis proves that Mg2+ imbalance could co-exist as the root cause or the consequence of other electrolyte disorders. Meanwhile, several preanalytical, analytical, and postanalytical aspects could influence Mg2+ measurement. This review highlights Mg2+ measurement's laboratory and clinical issues and some analyte disturbances associated with its imbalance. Understanding this basis could aid clinicians and laboratory professionals in Mg2+ result interpretation and patient management.
  16. Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS, Beh BK, et al.
    Integr Cancer Ther, 2016 Dec;15(4):NP53-NP66.
    PMID: 27230756
    BACKGROUND: Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells.

    METHODS: 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days.

    RESULTS: Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water-treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water-treated group.

    CONCLUSIONS: Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment.

  17. Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S
    Cancers (Basel), 2019 08 28;11(9).
    PMID: 31466290 DOI: 10.3390/cancers11091261
    Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
  18. Bilad MR, Azizo AS, Wirzal MDH, Jia Jia L, Putra ZA, Nordin NAHM, et al.
    J Environ Manage, 2018 Oct 01;223:23-28.
    PMID: 29885561 DOI: 10.1016/j.jenvman.2018.06.007
    Microalgae technology, if managed properly, has promising roles in solving food-water-energy nexus. The Achilles' heel is, however, to lower the costs associated with cultivation and harvesting. As a favorable technique, application of membrane process is strongly limited by membrane fouling. This study evaluates performance of nylon 6,6 nanofiber membrane (NFM) to a conventional polyvinylidene fluoride phase inverted membrane (PVDF PIM) for filtration of Chlorella vulgaris. Results show that nylon 6,6 NFM is superhydrophilic, has higher size of pore opening (0.22 vs 0.18 μm) and higher surface pore density (23 vs 18 pores/μm2) leading to higher permeance (1018 vs 493 L/m2hbar) and better fouling resistant. Such advantages help to outperform the filterability of PVDF PIM by showing much higher steady-state permeance (286 vs 120 L/m2hbar), with comparable biomass retention. In addition, unlike for PVDF PIM, imposing longer relaxation cycles further enhances the performance of the NFM (i.e., 178 L/m2hbar for 0.5 min and 236 L/m2hbar for 5 min). Overall findings confirm the advantages of nylon 6,6 NFM over the PVDF PIM. Such advantages can help to reduce required membrane area and specific aeration demand by enabling higher flux and lowering aeration rate. Nevertheless, developments of nylon 6,6 NFM material with respect to its intrinsic properties, mechanical strength and operational conditions of the panel can still be explored to enhance its competitiveness as a promising fouling resistant membrane material for microalgae filtration.
  19. Chin VK, Asyran AMY, Zakaria ZA, Abdullah WO, Chong PP, Nordin N, et al.
    J Parasit Dis, 2019 Mar;43(1):139-153.
    PMID: 30956457 DOI: 10.1007/s12639-018-1070-3
    Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potential molecular therapeutic target for various inflammatory diseases. Despite that, the role of TREM-1 during malaria pathogenesis remains obscure with present literature suggesting a link between TREM-1 with severe malaria development. Therefore, this study aims to investigate the role of TREM-1 and TREM-1 related drugs during severe malaria infection in Plasmodium berghei-infected mice model. Our findings revealed that TREM-1 concentration was significantly increased throughout the infection periods and TREM-1 was positively correlated with malaria parasitemia development. This suggests a positive involvement of TREM-1 in severe malaria development. Meanwhile, blocking of TREM-1 activation using rmTREM-1/Fc and TREM-1 clearance by mTREM-1/Ab had significantly reduced malaria parasitemia and suppressed the production of pro- inflammatory cytokines (TNF-α, IL-6 and IFN-γ) and anti-inflammatory cytokine (IL-10). Furthermore, histopathological analysis of TREM-1 related drug treatments, in particular rmTREM-1/Fc showed significant improvements in the histological conditions of major organs (kidneys, spleen, lungs, liver and brain) of Plasmodium berghei-infected mice. This study showed that modulation of TREM-1 released during malaria infection produces a positive outcome on malaria infection through inhibition of pro-inflammatory cytokines secretion and alleviation of histopathological conditions of affected organs. Nevertheless, further investigation on its optimal dosage and dose dependant study should be carried out to maximise its full potential as immunomodulatory or as an adjuvant in line with current antimalarial agents.
  20. Sharif AA, Unyah NZ, Nordin N, Basir R, Wana MN, Alapid Ahmad A, et al.
    PMID: 31827548 DOI: 10.1155/2019/2916547
    Background: Toxoplasmosis remains widely distributed globally and is one of the major neglected parasitic zoonotic infections. The infection is still endemic in most parts of the world due to poor control as well as challenges of the currently used medications which can be overcome by using natural products. This study evaluated the effect of ethanolic extract from the stem of Tinospora crispa (EETC) on host cell invasion and intracellular replication of Toxoplasma gondii.

    Method: The stem powder of T. crispa was soaked in absolute ethanol for 72 hours. The resulting ethanolic extract was screened for the presence of phytochemicals. Vero cells monolayer in 96-well plate was infected with RH strain of T. gondii and treated with concentrations of the EETC, Veratrine alkaloid, and clindamycin ranging from 1.56 to 200 μg/mL. MTT assay was conducted after 24 hours to evaluate the cytotoxicity and antiparasitic activities of the EETC. Four and 24 hours treatment models were adapted to assess the infection index and intracellular proliferation of T.

    Results: The study revealed that the EETC had no cytotoxic effects on Vero cells with IC50 = 179 μg/mL, as compared to clindamycin (IC50 = 116.5 μg/mL) and Veratrine alkaloid (IC50 = 60.4 μg/mL). The EETC had good anti-toxoplasma activities with IC50 = 6.31 μg/mL in comparison with clindamycin (IC50 = 8.33 μg/mL) and Veratrine alkaloid (IC50 = 14.25 μg/mL). The EETC caused more than 70% and 80% reduction in infection index and intracellular proliferation in both treatment models, respectively.

    Conclusion: This in vitro study showed that the EETC contains promising phytochemicals effective against T. gondii and safe to the host cells.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links