Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U
    Int J Mol Sci, 2012;13(8):9923-9941.
    PMID: 22949839 DOI: 10.3390/ijms13089923
    A green synthesis route for the production of silver nanoparticles using methanol extract from Solanum xanthocarpum berry (SXE) is reported in the present investigation. Silver nanoparticles (AgNps), having a surface plasmon resonance (SPR) band centered at 406 nm, were synthesized by reacting SXE (as capping as well as reducing agent) with AgNO(3) during a 25 min process at 45 °C. The synthesized AgNps were characterized using UV-Visible spectrophotometry, powdered X-ray diffraction, and transmission electron microscopy (TEM). The results showed that the time of reaction, temperature and volume ratio of SXE to AgNO(3) could accelerate the reduction rate of Ag(+) and affect the AgNps size and shape. The nanoparticles were found to be about 10 nm in size, mono-dispersed in nature, and spherical in shape. In vitro anti-Helicobacter pylori activity of synthesized AgNps was tested against 34 clinical isolates and two reference strains of Helicobacter pylori by the agar dilution method and compared with AgNO(3) and four standard drugs, namely amoxicillin (AMX), clarithromycin (CLA), metronidazole (MNZ) and tetracycline (TET), being used in anti-H. pylori therapy. Typical AgNps sample (S1) effectively inhibited the growth of H. pylori, indicating a stronger anti-H. pylori activity than that of AgNO(3) or MNZ, being almost equally potent to TET and less potent than AMX and CLA. AgNps under study were found to be equally efficient against the antibiotic-resistant and antibiotic-susceptible strains of H. pylori. Besides, in the H. pylori urease inhibitory assay, S1 also exhibited a significant inhibition. Lineweaver-Burk plots revealed that the mechanism of inhibition was noncompetitive.
  2. Syam AM, Hamid HA, Yunus R, Rashid U
    ScientificWorldJournal, 2013;2013:268385.
    PMID: 24363616 DOI: 10.1155/2013/268385
    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.
  3. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH
    J Oleo Sci, 2014;63(9):849-55.
    PMID: 25099911
    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
  4. Abdul Habib NS, Yunus R, Rashid U, Taufiq-Yap YH, Abidin ZZ, Syam AM, et al.
    J Oleo Sci, 2014;63(5):497-506.
    PMID: 24717547
    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
  5. Chang TS, Yunus R, Rashid U, Choong TS, Awang Biak DR, Syam AM
    J Oleo Sci, 2015;64(2):143-51.
    PMID: 25748374 DOI: 10.5650/jos.ess14162
    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance.
  6. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(1):91-9.
    PMID: 25492234 DOI: 10.5650/jos.ess14161
    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.
  7. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(5):505-14.
    PMID: 25843280 DOI: 10.5650/jos.ess14228
    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
  8. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al.
    Bioorg Chem, 2016 Jun;66:111-6.
    PMID: 27140727 DOI: 10.1016/j.bioorg.2016.04.005
    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.
  9. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al.
    Bioresour Technol, 2017 Jan;224:708-713.
    PMID: 27838316 DOI: 10.1016/j.biortech.2016.10.090
    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
  10. Taha M, Ismail NH, Ali M, Rashid U, Imran S, Uddin N, et al.
    Bioorg Chem, 2017 04;71:192-200.
    PMID: 28228228 DOI: 10.1016/j.bioorg.2017.02.005
    The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover a novel series of compounds 6-23 based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal potential. The most potent compound (23, IC50=0.10±0.001μM) among the series was found ∼70 times more lethal than the standard drug. The current series 6-23 conceded in the development of fourteen (14) extraordinarily active compounds against leishmaniasis. In silico analysis were also performed to probe the mode of action while all the compounds structure were established by NMR and Mass spectral analysis.
  11. Iftikhar F, Ali Y, Ahmad Kiani F, Fahad Hassan S, Fatima T, Khan A, et al.
    Bioorg Chem, 2017 10;74:53-65.
    PMID: 28753459 DOI: 10.1016/j.bioorg.2017.07.003
    In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors.
  12. Rehan M, Gardy J, Demirbas A, Rashid U, Budzianowski WM, Pant D, et al.
    Bioresour Technol, 2018 Feb;250:17-25.
    PMID: 29153646 DOI: 10.1016/j.biortech.2017.11.024
    This study presents a preliminary assessment of biodiesel production from waste sources available in the Kingdom of Saudi Arabia (KSA) for energy generation and solution for waste disposal issues. A case study was developed under three different scenarios: (S1) KSA population only in 2017, (S2) KSA population and pilgrims in 2017, and (S3) KSA population and pilgrims by 2030 using the fat fraction of the municipal solid waste. It was estimated that S1, S2, and S3 scenarios could produce around 1.08, 1.10 and 1.41 million tons of biodiesel with the energy potential of 43423, 43949 and 56493 TJ respectively. Furthermore, annual savings of US $55.89, 56.56 and 72.71 million can be generated from landfill diversion of food waste and added to the country's economy. However, there are challenges in commercialization of waste to biodiesel facilities in KSA, including waste collection and separation, impurities, reactor design and biodiesel quality.
  13. Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al-Resayes SI
    J Food Sci, 2018 Mar;83(3):624-630.
    PMID: 29377104 DOI: 10.1111/1750-3841.14033
    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein.

    PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.

  14. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Rashid U, Iqbal J, et al.
    Pak J Pharm Sci, 2018 Jul;31(4(Supplementary)):1501-1510.
    PMID: 30058542
    N-(Substituted)-5-(1-(4-methoxyphenylsulfonyl)piperidin-4-yl)-4H-1,2,4-triazol-3-ylthio) acetamide were synthesized by following conventional as well as microwave assisted protocol through five consecutive steps under the impact of various reaction conditions to control the reaction time and the yield of product. Starting from 4-methoxybenzenesulfonyl chloride and ethyl isonipecotate, product 3 was obtained which was converted into product 4 by treating with hydrazine hydrate. In step 3, the product 4 was refluxed with methyl isothiocyanate and KOH to yield compound 5 which was finally treated with variety of N-substituted acetamides to yield an array of different new compounds (8a-k). These synthesized compounds were evaluated for their inhibition potential against bovine carbonic anhydrase (bCA-II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Compound 8g demonstrated good activity against bCA-II, AChE and BChE with IC50 values of 8.69 ± 0.38 μM, 11.87±0.19 μM and 26.01±0.55 μM respectively. SAR studies assisted with molecular docking were carried out to explore the mode of binding of the compounds against the studied enzymes.
  15. Taha M, Rashid U, Imran S, Ali M
    Bioorg Med Chem, 2018 07 23;26(12):3654-3663.
    PMID: 29853339 DOI: 10.1016/j.bmc.2018.05.046
    Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (7-31) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50 ± 0.01 μM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.
  16. Lee CL, H'ng PS, Paridah MT, Chin KL, Rashid U, Maminski M, et al.
    R Soc Open Sci, 2018 Dec;5(12):180775.
    PMID: 30662718 DOI: 10.1098/rsos.180775
    In the present study, agricultural biomass-palm kernel shell (PKS) and coconut shell (CS)-was used to produce high porosity bioadsorbent using two-stage continuous physical activation method with different gas carrier (air and N2) in each stage. The activation temperature was set constant at 600, 700, 800 or 900°C for both activation stages with the heating rate of 3°C min-1. Two parameters, the gas carrier and activation temperature, were determined as the significant factors on the adsorption properties of bioadsorbent. BET, SEM, FTIR, TGA, CHNS/O and ash content were used to elucidate the developed bioadsorbent prepared from PKS and CS and its capacity towards the adsorption of methylene blue and iodine. The novel process of two-stage continuous physical activation method was able to expose mesopores and micropores that were previously covered/clogged in nature, and simultaneously create new pores. The synthesized bioadsorbents showed that the surface area (PKS: 456.47 m2 g-1, CS: 479.17 m2 g-1), pore size (PKS: 0.63 nm, CS: 0.62 nm) and pore volume (PKS: 0.13 cm3 g-1, CS: 0.15 cm3 g-1) were significantly higher than that of non-treated bioadsorbent. The surface morphology of the raw materials and synthesized bioadsorbent were accessed by SEM. Furthermore, the novel process meets the recent industrial adsorbent requirements such as low activation temperature, high fixed carbon content, high yield, high adsorption properties and high surface area, which are the key factors for large-scale production of bioadsorbent and its usage.
  17. Ali Y, Hamid SA, Rashid U
    Mini Rev Med Chem, 2018;18(18):1548-1558.
    PMID: 29792144 DOI: 10.2174/1389557518666180524113111
    Azo dyes are widely used in textile, fiber, cosmetic, leather, paint and printing industries. Besides their characteristic coloring function, azo compounds are reported as antibacterial, antiviral, antifungal and cytotoxic agents. They have the ability to be used as drug carriers, either by acting as a 'cargo' that entrap therapeutic agents or by prodrug approach. The drug is released by internal or external stimuli in the region of interest, as observed in colon-targeted drug delivery. Besides drug-like and drug carrier properties, a number of azo dyes are used in cellular staining to visualize cellular components and metabolic processes. However, the biological significance of azo compounds, especially in cancer chemotherapy, is still in its infancy. This may be linked to early findings that declared azo compounds as one of the possible causes of cancer and mutagenesis. Currently, researchers are screening the aromatic azo compounds for their potential biomedical use, including cancer diagnosis and therapy. In this review, we highlight the medical applications of azo compounds, particularly related to cancer research. The biomedical significance of cis-trans interchange and negative implications of azo compounds are also discussed in brief.
  18. Nehdi IA, Sbihi HM, Blidi LE, Rashid U, Tan CP, Al-Resayes SI
    Protein Pept Lett, 2018;25(2):164-170.
    PMID: 28240158 DOI: 10.2174/0929866524666170223150839
    BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis.

    OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared.

    METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods.

    RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214).

    CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.

  19. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

  20. Raof NA, Yunus R, Rashid U, Azis N, Yaakub Z
    Protein Pept Lett, 2018;25(2):171-179.
    PMID: 29359647 DOI: 10.2174/0929866525666180122095056
    BACKGROUND: The transesterification of high oleic palm oil methyl ester (HOPME) with neopentyl glycol (NPG) has been investigated. The present study revealed the application of low-pressure technology as a new synthesis method to produce NPG diesters. Single variable optimization and response surface methodology (RSM) were implemented to optimize the experimental conditions to achieve the maximum composition (wt%) of NPG diesters.

    OBJECTIVE: The main objective of this study was to optimize the production of NPG diesters and to characterize the optimized esters with typical chemical, physical and electrical properties to study its potential as insulating oil.

    METHODS: The transesterification reaction between HOPME and NPG was conducted in a 1L three-neck flask reactor at specified temperature, pressure, molar ratio and catalyst concentration. For the optimization, four factors have been studied and the diester product was characterized by using gas chromatography (GC) analysis. The synthesized esters were then characterized with typical properties of transformer oil such as flash point, pour point, viscosity and breakdown voltage and were compared with mineral insulating oil and commercial NPG dioleate. For formulation, different samples of NPG diesters with different concentration of pour point depressant were prepared and each sample was tested for its pour point measurement.

    RESULTS: The optimum conditions inferred from the analyses were: molar ratio of HOPME to NPG of 2:1.3, temperature = 182°C, pressure = 0.6 mbar and catalyst concentration of 1.2%. The synthesized NPG diesters showed very important improvement in fire safety compared to mineral oil with flash point of 300°C and 155°C, respectively. NPG diesters also exhibit a relatively good viscosity of 21 cSt. The most striking observation to emerge from the data comparison with NPG diester was the breakdown voltage, which was higher than mineral oil and definitely in conformance to the IEC 61099 limit at 67.5 kV. The formulation of synthesized NPD diesters with VISCOPLEX® pour point depressant has successfully increased the pour point of NPG diester from -14°C to -48°C.

    CONCLUSION: The reaction time for the transesterification of HOPME with NPG to produce NPG diester was successfully reduced to 1 hour from the 14 hours required in the earlier synthesis method. The main highlight of this study was the excess reactant which is no longer methyl ester but the alcohol (NPG). The optimum reaction conditions for the synthesis were molar ratio of 2:1.13 for NPG:HOPME, 182°C, 0.6 mbar and catalyst concentration of 1.2 wt%. The maximum NPG diester yield of 87 wt% was consistent with the predicted yield of 87.7 wt% obtained from RSM. The synthesized diester exhibited better insulating properties than the commercial products especially with regards to the breakdown voltage, flash point and moisture content.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links