Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Moeini H, Rahim RA, Omar AR, Shafee N, Yusoff K
    Appl Microbiol Biotechnol, 2011 Apr;90(1):77-88.
    PMID: 21181148 DOI: 10.1007/s00253-010-3050-0
    The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.
  2. Joseph NM, Ho KL, Tey BT, Tan CS, Shafee N, Tan WS
    Biotechnol Prog, 2016 Jul 08;32(4):1038-45.
    PMID: 27088434 DOI: 10.1002/btpr.2279
    The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.
  3. Shafee N, Kaluz S, Ru N, Stanbridge EJ
    Cancer Lett, 2009 Sep 8;282(1):109-15.
    PMID: 19342157 DOI: 10.1016/j.canlet.2009.03.004
    The phosphatidylinositol 3-kinase/Akt (PI3K) pathway regulates hypoxia-inducible factor (HIF) activity. Higher expression of HIF-1alpha and carbonic anhydrase IX (CAIX), a hypoxia-inducible gene, in HT10806TG fibrosarcoma cells (mutant N-ras allele), compared to derivative MCH603 cells (deleted mutant N-ras allele), correlated with increased PI3K activity. Constitutive activation of the PI3K pathway in MCH603/PI3K(act) cells increased HIF-1alpha but, surprisingly, decreased CAIX levels. The cell-type specific inhibitory effect on CAIX was confirmed at the transcriptional level whereas epigenetic modifications of CA9 were ruled out. In summary, our data do not substantiate the generalization that PI3K upregulation leads to increased HIF activity.
  4. Liew SY, Stanbridge EJ, Yusoff K, Shafee N
    J Ethnopharmacol, 2012 Nov 21;144(2):453-6.
    PMID: 23022321 DOI: 10.1016/j.jep.2012.09.024
    Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions.
  5. Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N
    Virol J, 2012;9:155.
    PMID: 22877087 DOI: 10.1186/1743-422X-9-155
    Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
  6. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
  7. Ch'ng WC, Saw WT, Yusoff K, Shafee N
    Acta Virol., 2011;55(3):227-33.
    PMID: 21978156
    Enterovirus 71 (EV71) is one of the viruses that cause hand, foot and mouth disease. Its viral capsid protein 1 (VP1), which contains many neutralization epitopes, is an ideal target for vaccine development. Recently, we reported the induction of a strong immune response in rabbits to a truncated VP1 fragment (Nt-VP1t) displayed on a recombinant Newcastle disease virus (NDV) capsid protein. Protective efficacy of this vaccine, however, can only be tested in mice, since all EV71 animal models thus far were developed in mouse systems. In this study, we evaluated the type of immune responses against the protein developed by adult BALB/c mice. Nt-VP1t protein induced high levels of VP1 IgG antibody production in mice. Purified VP1 antigen stimulated activation, proliferation and differentiation of splenocytes harvested from these mice. They also produced significant levels of IFN-γ, a Th1-related cytokine. Taken together, Nt-VP1t protein is a potent immunogen in adult mice and our findings provide the data needed for testing of its protective efficacy in mouse models of EV71 infections.
  8. Abubakar S, Shafee N
    Malays J Pathol, 2002 Jun;24(1):23-7.
    PMID: 16329552
    Dengue continues to be a major health threat to Malaysia a century after its first reported outbreak in 1902. Examination of the available outbreak data suggested that a major DF/DHF outbreak occurred in Malaysia in a cyclical pattern of approximately every 8 years. All four dengue virus serotypes are found co-circulating in Malaysia, but after the first and only major outbreak involving DEN-4 in 1960's, only DEN-1, DEN-2 and DEN-3 were associated with DF/DHF outbreaks. It is argued that perhaps the spread of the later dengue virus serotypes followed the pattern of spread of the mosquito vector Aedes aegypti, whereas the former was associated with Aedes albopictus, the outdoor and rural area dwelling mosquito. Estimating from the trend and pattern of dengue and the associated dengue virus serotypes, unless there is a major breakthrough in dengue vaccine development, it is likely that dengue outbreaks will continue to occur in Malaysia throughout the 21st century.
  9. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
  10. Mustafa S, Abd-Aziz N, Saw WT, Liew SY, Yusoff K, Shafee N
    Vaccines (Basel), 2020 Dec 07;8(4).
    PMID: 33297428 DOI: 10.3390/vaccines8040742
    Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198-297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198-297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198-297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198-297 protein as EV71 vaccine.
  11. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
  12. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
  13. Lee SY, Mustafa S, Ching YW, Shafee N
    Mol Biol (Mosk), 2017 3 3;51(1):104-110.
    PMID: 28251972 DOI: 10.7868/S0026898417010116
    Both zinc and the α-subunit of hypoxia-inducible factor (HIF-1α) play important roles in the remodelling of mammary gland tissues. In the present study, we examined the level and the transcriptional activity of HIF-1α in mammary cells upon zinc treatment. In MCF-7 mammary adenocarcinoma and MCF-10A mammary epithelial cell lines, the toxicity levels of zinc differ. Interestingly, both cell lines overexpress HIF-1α following zinc treatment. As it was evident from an up-regulation of its specific target gene CA9 that encodes carbonic anhydrase IX, the stabilized HIF-1α translocated to the nucleus and was transcriptionally active. Hence, we conclude that zinc causes normoxic accumulation of transcriptionally active HIF-1α by interfering with its post-translational regulation.
  14. Chia SL, Yusoff K, Shafee N
    Virol J, 2014 May 16;11:91.
    PMID: 24886301 DOI: 10.1186/1743-422X-11-91
    BACKGROUND: Newcastle disease virus (NDV), a single-stranded RNA virus of the family Paramyxoviridae, is a candidate virotherapy agent in cancer treatment. Promising responses were observed in clinical studies. Despite its high potential, the possibility of the virus to develop a persistent form of infection in cancer cells has not been investigated. Occurrence of persistent infection by NDV in cancer cells may cause the cells to be less susceptible to the virus killing. This would give rise to a population of cancer cells that remains viable and resistant to treatment.

    RESULTS: During infection experiment in a series of colorectal cancer cell lines, we adventitiously observed a development of persistent infection by NDV in SW480 cells, but not in other cell lines tested. This cell population, designated as SW480P, showed resistancy towards NDV killing in a re-infection experiment. The SW480P cells retained NDV genome and produced virus progeny with reduced plaque forming ability.

    CONCLUSION: These observations showed that NDV could develop persistent infection in cancer cells and this factor needs to be taken into consideration when using NDV in clinical settings.

  15. Abd-Aziz N, Stanbridge EJ, Shafee N
    Oncol Lett, 2015 Oct;10(4):2192-2196.
    PMID: 26622817
    Bortezomib is the first proteasomal inhibitor (PI) to be used therapeutically for treating relapse cases of multiple myeloma and mantle cell lymphoma. A proposed mechanism for its action is that it prevents the proteasomal degradation of proapoptotic proteins, leading to enhanced apoptosis. Although the α subunit of hypoxia-inducible factor (HIF)-1 is not degraded with bortezomib treatment, the heterodimeric HIF-1 fails to transactivate target genes. HIF-1 and HIF-2 are related hypoxia-inducible transcription factors that are important for the survival of hypoxic tumor cells. The majority of reports have focused on the effects of bortezomib on the transcriptional activities of HIF-1, but not HIF-2. The present study investigated the effects of bortezomib on HIF-2 activity in cancer cells with different levels of HIF-1α and HIF-2α subunits. HIF-α subunit levels were detected using specific antibodies, while HIF transcriptional activities were evaluated using immunodetection, reverse transcription-polymerase chain reaction and luciferase reporter assay. Bortezomib treatment was found to suppress the transcription and expression of CA9, a HIF-1-specific target gene; however, it had minimal effects on EPO and GLUT-1, which are target genes of both HIF-1 and HIF-2. These data suggest that bortezomib attenuates the transcriptional activity only of HIF-1, and not HIF-2. This novel finding on the lack of an inhibitory effect of bortezomib on HIF-2 transcriptional activity has implications for the improvement of design and treatment modalities of bortezomib and other PI drugs.
  16. Jamal MH, Ch'ng WC, Yusoff K, Shafee N
    Cancer Cell Int, 2012 Aug 01;12(1):35.
    PMID: 22853623 DOI: 10.1186/1475-2867-12-35
    BACKGROUND: Cisplatin resistance is a serious problem in cancer treatment. To overcome it, alternative approaches including virotherapy are being pursued. One of the candidates for anticancer virotherapy is the Newcastle disease virus (NDV). Even though NDV's oncolytic properties in various cancer cells have been widely reported, information regarding its effects on cisplatin resistant cancer cells is still limited. Therefore, we tested the oncolytic efficacy of a strain of NDV, designated as AF2240, in a cisplatin-resistant breast cancer cell line.

    METHODS: Cisplatin-resistant cell line (MCF7-CR) was developed from the MCF7 human breast adenocarcinoma cell line by performing a seven-cyclic exposure to cisplatin. Following NDV infection, fluorescence-activated cell sorting (FACS) analysis and immunoblotting were used to measure cell viability and viral protein expression, respectively. Production of virus progeny was then assessed by using the plaque assay technique.

    RESULTS: Infection of a mass population of the MCF7-CR with NDV resulted in 50% killing in the first 12 hours post-infection (hpi), comparable to the parental MCF7. From 12 hpi onwards, the remaining MCF7-CR became less susceptible to NDV killing. This reduced susceptibility led to increased viral protein synthesis and virus progeny production. The reduction was also associated with a prolonged cell survival via stabilization of the survivin protein.

    CONCLUSIONS: Our findings showed for the first time, the involvement of survivin in the reduction of NDV-induced oncolysis in a subpopulation of cisplatin-resistant cells. This information will be important towards improving the efficacy of NDV as an anticancer agent in drug resistant cancers.

  17. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, et al.
    FEMS Microbiol Lett, 2014 Jun;355(2):177-84.
    PMID: 24828482 DOI: 10.1111/1574-6968.12469
    Isoprenoids are a large, diverse group of secondary metabolites which has recently raised a renewed research interest due to genetic engineering advances, allowing specific isoprenoids to be produced and characterized in heterologous hosts. Many researches on metabolic engineering of heterologous hosts for increased isoprenoid production are focussed on Escherichia coli and yeasts. E. coli, as most prokaryotes, use the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway for isoprenoid production. Yeasts on the other hand, use the mevalonate pathway which is commonly found in eukaryotes. However, Lactococcus lactis is an attractive alternative host for heterologous isoprenoid production. Apart from being food-grade, this Gram-positive prokaryote uses the mevalonate pathway for isoprenoid production instead of the MEP pathway. Previous studies have shown that L. lactis is able to produce sesquiterpenes through heterologous expression of plant sesquiterpene synthases. In this work, we analysed the gene expression of the lactococcal mevalonate pathway through RT-qPCR to successfully engineer L. lactis as an efficient host for isoprenoid production. We then overexpressed the mvk gene singly or co-expressed with the mvaA gene as an attempt to increase β-sesquiphellandrene production in L. lactis. It was observed that co-expression of mvk with mvaA doubled the amount of β-sesquiphellandrene produced.
  18. Song AA, Abdullah JO, Abdullah MP, Shafee N, Rahim RA
    Int J Mol Sci, 2012;13(2):1582-97.
    PMID: 22408409 DOI: 10.3390/ijms13021582
    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.
  19. Baradaran A, Yusoff K, Shafee N, Rahim RA
    J Cancer, 2016;7(4):462-6.
    PMID: 26918060 DOI: 10.7150/jca.13566
    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells.
  20. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan EF, et al.
    PLoS One, 2012;7(12):e52444.
    PMID: 23300671 DOI: 10.1371/journal.pone.0052444
    Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links