Displaying all 8 publications

Abstract:
Sort:
  1. George P, Ramasamy P, Thurairajasingam S, Shah Z
    Med J Malaysia, 2015 Aug;70(4):251-5.
    PMID: 26358024 MyJurnal
    INTRODUCTION: Opioid dependence is recorded as the most common drug of abuse in Malaysia. Currently, the preferred substitution therapy for most Government treatment centres is methadone used as substitution therapy for opioid dependence. There are, however patients who may benefit from being on the combined buprenorphine-naloxone formulation as substitution therapy instead. We discuss six cases of opioid dependence of varied backgrounds that were treated with buprenorphinenaloxone therapy and their outcomes.

    DISCUSSION: All of the reported patients improved after the induction of buprenorphine- naloxone. Two of the cases highlighted the transfer of patients on methadone to buprenorphine-naloxone due to the adverse effect and interactions of methadone with other medications. During the transfer there were no major adverse reactions noted, and patients were safely able to continue with the maintenance therapy of buprenorphine- naloxone.

    CONCLUSION: Buprenorphine-naloxone is a safe and effective drug substitution therapy for opioid dependence. It has fewer interactions with other medications, and has similar efficacy to methadone. Being a partial agonist, it has a less sedating effect making patients more functional.
  2. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I
    Sci Rep, 2019 02 04;9(1):1196.
    PMID: 30718893 DOI: 10.1038/s41598-018-37964-y
    In the present research, aluminum oxide- water (Al2O3-H2O) nanofluid free convection due to magnetic forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability on nanoparticles migration. To predict properties of Al2O3- water nanofluid, Brownian motion impact has been involved. Outcomes revels that considering higher magnetic forces results in greater conduction mechanism. Permeability can enhance the temperature gradient.
  3. Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y
    Biomed Pharmacother, 2021 Dec;144:112250.
    PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250
    The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
  4. Siddiqui A, Akhtar S, Shah Z, Othman I, Kumari Y
    Curr Neuropharmacol, 2021;19(6):885-895.
    PMID: 32972344 DOI: 10.2174/1570159X18666200924122732
    It is a known fact that inflammation affects several physiological processes, including the functioning of the central nervous system. Additionally, impairment of lipid mechanisms/pathways have been associated with a number of neurodegenerative disorders and Alzheimer's Disease (AD) is one of them. However, much attention has been given to the link between tau and beta- amyloid hypothesis in AD pathogenesis/prognosis. Increasing evidences suggest that biologically active lipid molecules could influence the pathophysiology of AD via a different mechanism of inflammation. This review intends to highlight the role of inflammatory responses in the context of AD with the emphasis on biochemical pathways of lipid metabolism enzyme, 5-lipoxygenase (5- LO).
  5. Asghar A, Lund LA, Shah Z, Vrinceanu N, Deebani W, Shutaywi M
    Nanomaterials (Basel), 2022 May 05;12(9).
    PMID: 35564275 DOI: 10.3390/nano12091566
    The effect of thermal radiation on the three-dimensional magnetized rotating flow of a hybrid nanofluid has been numerically investigated. Enhancing heat transmission is a contemporary engineering challenge in a range of sectors, including heat exchangers, electronics, chemical and biological reactors, and medical detectors. The main goal of the current study is to investigate the effect of magnetic parameter, solid volume fraction of copper, Eckert number, and radiation parameter on velocity and temperature distributions, and the consequence of solid volume fraction on declined skin friction and heat transfer against suction and a stretching/shrinking surface. A hybrid nanofluid is a contemporary type of nanofluid that is used to increase heat transfer performance. A linear similarity variable is−applied to convert the governing partial differential equations (PDEs) into corresponding ordinary differential equations (ODEs). Using the three-stage Labatto III-A method included in the MATLAB software’s bvp4c solver, the ODE system is solved numerically. In certain ranges of involved parameters, two solutions are received. The temperature profile θη upsurges in both solutions with growing values of EC and Rd. Moreover, the conclusion is that solution duality exists when the suction parameter S≥Sci, while no flow of fluid is possible when S
  6. Asghar A, Chandio AF, Shah Z, Vrinceanu N, Deebani W, Shutaywi M, et al.
    Heliyon, 2023 Feb;9(2):e13189.
    PMID: 36747513 DOI: 10.1016/j.heliyon.2023.e13189
    Through a vertically shrinking sheet, a two-dimensional magnetic nanofluid is numerically analyzed for convection, heat generation and absorption, and the slip velocity effect. In this research, Al2O3-Cu/water composite nanofluid is studied, where water is deemed the base liquid and copper (Cu) and alumina (Al2O3) are the solid nanoparticles. Modern composite nanofluids improve heat transfer efficiency. Using the Tiwari-Das model, the current study examines the effects of the solid volume fraction of copper, heat generation/absorption, MHD, mixed convection, and velocity slip parameters on velocity and temperature distributions. Introducing exponential similarity variables converts nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). MATLAB bvp4c solver is used to solve ODEs. Results showed dual solutions for suction with 0%-10% copper nanoparticles and 1%-500% heat generation/absorption. As copper (Cu) solid volume percentage increases from 0% to 10%, reduced skin friction f ″ ( 0 ) boosts in the first solution but falls in the second. When Cu is added to both solutions, heat transport - θ ' ( 0 ) decreases. As heat generation/absorption increases 1%-500%, - θ ' ( 0 ) decreases in both solutions. In conclusion, solution dichotomy exists when suction parameter S ≥ S c i in assisting flow case, while no fluid flow is possible when S < S c i .
  7. Tang TQ, Jan R, Khurshaid A, Shah Z, Vrinceanu N, Racheriu M
    Sci Rep, 2023 Sep 01;13(1):14398.
    PMID: 37658134 DOI: 10.1038/s41598-023-41440-7
    The burden of vector-borne infections is significant, particularly in low- and middle-income countries where vector populations are high and healthcare infrastructure may be inadequate. Further, studies are required to investigate the key factors of vector-borne infections to provide effective control measure. This study focuses on formulating a mathematical framework to characterize the spread of chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use Banach's and Schaefer's fixed point theorems to investigate the existence and uniqueness of the suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms are employed on the infection level of chikungunya. Our research identified the framework's essential input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, memory index or fractional order, and treatment could be used as efficient controlling variables.
  8. Tang TQ, Jan R, Shah Z, Vrinceanu N, Tanasescu C, Jan A
    PLoS One, 2024;19(4):e0297967.
    PMID: 38656969 DOI: 10.1371/journal.pone.0297967
    Infectious disease cryptosporidiosis is caused by the cryptosporidium parasite, a type of parasitic organism. It is spread through the ingestion of contaminated water, food, or fecal matter from infected animals or humans. The control becomes difficult because the parasite may remain in the environment for a long period. In this work, we constructed an epidemic model for the infection of cryptosporidiosis in a fractional framework with strong and weak immunity concepts. In our analysis, we utilize the well-known next-generation matrix technique to evaluate the reproduction number of the recommended model, indicated by [Formula: see text]. As [Formula: see text], our results show that the disease-free steady-state is locally asymptotically stable; in other cases, it becomes unstable. Our emphasis is on the dynamical behavior and the qualitative analysis of cryptosporidiosis. Moreover, the fixed point theorem of Schaefer and Banach has been utilized to investigate the existence and uniqueness of the solution. We identify suitable conditions for the Ulam-Hyers stability of the proposed model of the parasitic infection. The impact of the determinants on the sickness caused by cryptosporidiosis is highlighted by the examination of the solution pathways using a novel numerical technique. Numerical investigation is conducted on the solution pathways of the system while varying various input factors. Policymakers and health officials are informed of the crucial factors pertaining to the infection system to aid in its control.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links