Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Yusof ZYM, Mohamed NH, Radzi Z, Yahya NA, Ramli AS, Abdul Kadir R
    Ann Dent, 2007;14(1):31-38.
    MyJurnal
    Background: The high prevalence and impacts of orofacial pain (OFP) have caused major sufferings to individuals and society. The purpose of the study was to investigate the problems and impacts of OFP among a group of Malaysian aborigines. The objectives were to determine (i) the prevalence, aetiology, duration, severity, types and persistence of OFP during the past 3 months preceding the study; (ii) its associated impact on daily performance; and (iii) the measures taken for pain relief.
    Methods: This is a cross sectional study carried out in Kuala Lipis, Pahang involving 6 villages of Orang Asli Bateq and Semai. Study sample was chosen using convenient sampling including adults aged 16 years and above. Participants were invited for an interview using structured questionnaire followed by clinical examination. Data analysis was carried out using SPSS ver12.
    Results: Response rate was low at 20% (n = 140). Over one-quarter (26.4%) of the sample experienced OFP in the previous 3 months. Toothache was found to be the main aetiology (83.3%) followed by gingival pain (18.9%), temporomandibular joint (10.8%) and facial pain (8.1%). Mean duration of pain was 9.8 days for toothache, 162.4 days for gingival pain, 7.3 days for TMJ and 5.7 days for facial pain. Of those who had OFP, over half rated the pain as moderate (37.8%) and severe (29.7%) and most of the pain was ‘intermittent’ in nature (81.1%). Over half (62.2%) admitted the pain had disappeared during the interview. In terms of pain relief, 56.8% of the sample used traditional medicine. The pain had impacted on the chewing ability (70.3%, p=0.01), ability to sleep at night (73.0%, p<0.001), levels of anxiety (70.3%), ability to perform daily chores (33.3%) and social life (35.1%) of the Orang Asli sample.
    Conclusion: This study suggests the prevalence of OFP was high among the Orang Asli sample, which imposed considerable physical and psychological impacts on daily life.
    Key words: orofacial pain; impacts; quality of life; Malaysian aborigines
  2. Yahya N, Mohamad Salleh SA, Mohd Nasir NF, Abdul Manan H
    Asia Pac J Clin Oncol, 2024 Apr;20(2):240-250.
    PMID: 36683266 DOI: 10.1111/ajco.13915
    BACKGROUND: Proton and carbon-ion therapy may spare normal tissues in regions with many critical structures surrounding the target volume. As toxicity outcome data are emerging, we aimed to synthesize the published data for the toxicity outcomes of proton or carbon-ion therapy (together known as particle beam therapy [PBT]) for primary nasopharyngeal carcinoma (NPC).

    MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases to identify original studies reporting toxicity outcomes following PBT of primary NPC. Quality assessment was performed using NIH's Quality Assessment Tool. Reports were extracted for information on demographics, main results, and clinical and dose factors correlates. Meta-analysis was performed using the random-effects model.

    RESULTS: Twelve studies were selected (six using mixed particle-photon beams, five performed comparisons to photon-based therapy). The pooled event rates for acute grade ≥2 toxicities mucositis, dermatitis, xerostomia weight loss are 46% (95% confidence interval [95% CI]-29%-64%, I2 = 87%), 47% (95% CI-28%-67%, I2 = 87%), 16% (95% CI-9%-29%, I2 = 76%), and 36% (95% CI-27%-47%, I2 = 45%), respectively. Only one late endpoint (xerostomia grade ≥2) has sufficient data for analysis with pooled event rate of 9% (95% CI-3%-29%, I2 = 77%), lower than intensity-modulated radiotherapy 27% (95% CI-10%-54%, I2 = 95%). For most endpoints with significant differences between the PBT and photon-based therapies, PBT resulted in better outcomes. In two studies where dose distribution was studied, doses to the organs at risk were independent risk factors for toxicities.

    CONCLUSION: PBT may reduce the risk of acute toxicities for patients treated for primary NPC, likely due to dose reduction to critical structures. The pooled event rate for toxicities derived in this study can be a guide for patient counseling.

  3. Sairin ME, Yahya N, Kuan CY, Yunus MRM, Abdullah MK
    Indian J Otolaryngol Head Neck Surg, 2019 Oct;71(Suppl 1):18-20.
    PMID: 31741921 DOI: 10.1007/s12070-015-0940-6
    Lymphoepithelial carcinoma (LEC) of salivary glands is a rare malignant salivary gland tumour and demonstrates genetic and regional distribution. It commonly occurs in major salivary gland especially parotid gland. We report a case of LEC of submandibular gland occurring in a 70 year-old lady.
  4. Al-Ezzi A, Kamel N, Al-Shargabi AA, Al-Shargie F, Al-Shargabi A, Yahya N, et al.
    Front Psychiatry, 2023;14:1155812.
    PMID: 37255678 DOI: 10.3389/fpsyt.2023.1155812
    INTRODUCTION: The early diagnosis and classification of social anxiety disorder (SAD) are crucial clinical support tasks for medical practitioners in designing patient treatment programs to better supervise the progression and development of SAD. This paper proposes an effective method to classify the severity of SAD into different grading (severe, moderate, mild, and control) by using the patterns of brain information flow with their corresponding graphical networks.

    METHODS: We quantified the directed information flow using partial directed coherence (PDC) and the topological networks by graph theory measures at four frequency bands (delta, theta, alpha, and beta). The PDC assesses the causal interactions between neuronal units of the brain network. Besides, the graph theory of the complex network identifies the topological structure of the network. Resting-state electroencephalogram (EEG) data were recorded for 66 patients with different severities of SAD (22 severe, 22 moderate, and 22 mild) and 22 demographically matched healthy controls (HC).

    RESULTS: PDC results have found significant differences between SAD groups and HCs in theta and alpha frequency bands (p < 0.05). Severe and moderate SAD groups have shown greater enhanced information flow than mild and HC groups in all frequency bands. Furthermore, the PDC and graph theory features have been used to discriminate three classes of SAD from HCs using several machine learning classifiers. In comparison to the features obtained by PDC, graph theory network features combined with PDC have achieved maximum classification performance with accuracy (92.78%), sensitivity (95.25%), and specificity (94.12%) using Support Vector Machine (SVM).

    DISCUSSION: Based on the results, it can be concluded that the combination of graph theory features and PDC values may be considered an effective tool for SAD identification. Our outcomes may provide new insights into developing biomarkers for SAD diagnosis based on topological brain networks and machine learning algorithms.

  5. Al-Ezzi A, Kamel N, Al-Shargabi AA, Al-Shargie F, Al-Shargabi A, Yahya N, et al.
    Front Psychiatry, 2023;14:1257713.
    PMID: 37555003 DOI: 10.3389/fpsyt.2023.1257713
    [This corrects the article DOI: 10.3389/fpsyt.2023.1155812.].
  6. Yahya N, Nyuk CM, Ismail AF, Hussain N, Rostami A, Ismail A, et al.
    Sensors (Basel), 2020 Feb 13;20(4).
    PMID: 32069956 DOI: 10.3390/s20041014
    In the current study, we developed an adaptive algorithm that can predict oil mobilization in a porous medium on the basis of optical data. Associated mechanisms based on tuning the electromagnetic response of magnetic and dielectric nanoparticles are also discussed. This technique is a promising method in rational magnetophoresis toward fluid mobility via fiber Bragg grating (FBG). The obtained wavelength shift due to Fe3O4 injection was 75% higher than that of dielectric materials. This use of FBG magneto-optic sensors could be a remarkable breakthrough for fluid-flow tracking in oil reservoirs. Our computational algorithm, based on piecewise linear polynomials, was evaluated with an analytical technique for homogeneous cases and achieved 99.45% accuracy. Theoretical values obtained via coupled-mode theory agreed with our FBG experiment data of at a level of 95.23% accuracy.
  7. Kuziel A, Dzido G, Jędrysiak RG, Kolanowska A, Jóźwiak B, Beunat J, et al.
    ACS Sustain Chem Eng, 2022 May 23;10(20):6596-6608.
    PMID: 35634268 DOI: 10.1021/acssuschemeng.2c00226
    Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s-1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq-1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
  8. Yahya N, Ebert MA, Bulsara M, Haworth A, Kearvell R, Foo K, et al.
    Radiat Oncol, 2014;9:282.
    PMID: 25498565 DOI: 10.1186/s13014-014-0282-7
    To assess the impact of incremental modifications of treatment planning and delivery technique, as well as patient anatomical factors, on late gastrointestinal toxicity using data from the TROG 03.04 RADAR prostate radiotherapy trial.
  9. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al.
    Radiother Oncol, 2015 Nov;117(2):277-82.
    PMID: 26476560 DOI: 10.1016/j.radonc.2015.10.003
    This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events.
  10. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al.
    Med Phys, 2016 May;43(5):2040.
    PMID: 27147316 DOI: 10.1118/1.4944738
    Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate.
  11. Yahya N, Ebert MA, Bulsara M, Haworth A, Kennedy A, Joseph DJ, et al.
    Radiother Oncol, 2015 Jul;116(1):112-8.
    PMID: 26163088 DOI: 10.1016/j.radonc.2015.06.011
    To identify dosimetry, clinical factors and medication intake impacting urinary symptoms after prostate radiotherapy.
  12. Yahya N, Ebert MA, Bulsara M, Kennedy A, Joseph DJ, Denham JW
    Radiother Oncol, 2016 08;120(2):339-45.
    PMID: 27370204 DOI: 10.1016/j.radonc.2016.05.010
    BACKGROUND AND PURPOSE: Most predictive models are not sufficiently validated for prospective use. We performed independent external validation of published predictive models for urinary dysfunctions following radiotherapy of the prostate.

    MATERIALS/METHODS: Multivariable models developed to predict atomised and generalised urinary symptoms, both acute and late, were considered for validation using a dataset representing 754 participants from the TROG 03.04-RADAR trial. Endpoints and features were harmonised to match the predictive models. The overall performance, calibration and discrimination were assessed.

    RESULTS: 14 models from four publications were validated. The discrimination of the predictive models in an independent external validation cohort, measured using the area under the receiver operating characteristic (ROC) curve, ranged from 0.473 to 0.695, generally lower than in internal validation. 4 models had ROC >0.6. Shrinkage was required for all predictive models' coefficients ranging from -0.309 (prediction probability was inverse to observed proportion) to 0.823. Predictive models which include baseline symptoms as a feature produced the highest discrimination. Two models produced a predicted probability of 0 and 1 for all patients.

    CONCLUSIONS: Predictive models vary in performance and transferability illustrating the need for improvements in model development and reporting. Several models showed reasonable potential but efforts should be increased to improve performance. Baseline symptoms should always be considered as potential features for predictive models.

  13. Yahya N, Ebert MA, House MJ, Kennedy A, Matthews J, Joseph DJ, et al.
    Int J Radiat Oncol Biol Phys, 2017 02 01;97(2):420-426.
    PMID: 28068247 DOI: 10.1016/j.ijrobp.2016.10.024
    PURPOSE: We assessed the association of the spatial distribution of dose to the bladder surface, described using dose-surface maps, with the risk of urinary dysfunction.

    METHODS AND MATERIALS: The bladder dose-surface maps of 754 participants from the TROG 03.04-RADAR trial were generated from the volumetric data by virtually cutting the bladder at the sagittal slice, intersecting the bladder center-of-mass through to the bladder posterior and projecting the dose information on a 2-dimensional plane. Pixelwise dose comparisons were performed between patients with and without symptoms (dysuria, hematuria, incontinence, and an International Prostate Symptom Score increase of ≥10 [ΔIPSS10]). The results with and without permutation-based multiple-comparison adjustments are reported. The pixelwise multivariate analysis findings (peak-event model for dysuria, hematuria, and ΔIPSS10; event-count model for incontinence), with adjustments for clinical factors, are also reported.

    RESULTS: The associations of the spatially specific dose measures to urinary dysfunction were dependent on the presence of specific symptoms. The doses received by the anteroinferior and, to lesser extent, posterosuperior surface of the bladder had the strongest relationship with the incidence of dysuria, hematuria, and ΔIPSS10, both with and without adjustment for clinical factors. For the doses to the posteroinferior region corresponding to the area of the trigone, the only symptom with significance was incontinence.

    CONCLUSIONS: A spatially variable response of the bladder surface to the dose was found for symptoms of urinary dysfunction. Limiting the dose extending anteriorly might help reduce the risk of urinary dysfunction.

  14. Awais MA, Yusoff MZ, Khan DM, Yahya N, Kamel N, Ebrahim M
    Sensors (Basel), 2021 Sep 30;21(19).
    PMID: 34640888 DOI: 10.3390/s21196570
    Motor imagery (MI)-based brain-computer interfaces have gained much attention in the last few years. They provide the ability to control external devices, such as prosthetic arms and wheelchairs, by using brain activities. Several researchers have reported the inter-communication of multiple brain regions during motor tasks, thus making it difficult to isolate one or two brain regions in which motor activities take place. Therefore, a deeper understanding of the brain's neural patterns is important for BCI in order to provide more useful and insightful features. Thus, brain connectivity provides a promising approach to solving the stated shortcomings by considering inter-channel/region relationships during motor imagination. This study used effective connectivity in the brain in terms of the partial directed coherence (PDC) and directed transfer function (DTF) as intensively unconventional feature sets for motor imagery (MI) classification. MANOVA-based analysis was performed to identify statistically significant connectivity pairs. Furthermore, the study sought to predict MI patterns by using four classification algorithms-an SVM, KNN, decision tree, and probabilistic neural network. The study provides a comparative analysis of all of the classification methods using two-class MI data extracted from the PhysioNet EEG database. The proposed techniques based on a probabilistic neural network (PNN) as a classifier and PDC as a feature set outperformed the other classification and feature extraction techniques with a superior classification accuracy and a lower error rate. The research findings indicate that when the PDC was used as a feature set, the PNN attained the greatest overall average accuracy of 98.65%, whereas the same classifier was used to attain the greatest accuracy of 82.81% with the DTF. This study validates the activation of multiple brain regions during a motor task by achieving better classification outcomes through brain connectivity as compared to conventional features. Since the PDC outperformed the DTF as a feature set with its superior classification accuracy and low error rate, it has great potential for application in MI-based brain-computer interfaces.
  15. Yahya N, Musa H, Ong ZY, Elamvazuthi I
    Sensors (Basel), 2019 Nov 08;19(22).
    PMID: 31717412 DOI: 10.3390/s19224878
    In this work, an algorithm for the classification of six motor functions from an electroencephalogram (EEG) signal that combines a common spatial pattern (CSP) filter and a continuous wavelet transform (CWT), is investigated. The EEG data comprise six grasp-and-lift events, which are used to investigate the potential of using EEG as input signals with brain computer interface devices for controlling prosthetic devices for upper limb movement. Selected EEG channels are the ones located over the motor cortex, C3, Cz and C4, as well as at the parietal region, P3, Pz and P4. In general, the proposed algorithm includes three main stages, band pass filtering, CSP filtering, and wavelet transform and training on GoogLeNet for feature extraction, feature learning and classification. The band pass filtering is performed to select the EEG signal in the band of 7 Hz to 30 Hz while eliminating artifacts related to eye blink, heartbeat and muscle movement. The CSP filtering is applied on two-class EEG signals that will result in maximizing the power difference between the two-class dataset. Since CSP is mathematically developed for two-class events, the extension to the multiclass paradigm is achieved by using the approach of one class versus all other classes. Subsequently, continuous wavelet transform is used to convert the band pass and CSP filtered signals from selected electrodes to scalograms which are then converted to images in grayscale format. The three scalograms from the motor cortex regions and the parietal region are then combined to form two sets of RGB images. Next, these RGB images become the input to GoogLeNet for classification of the motor EEG signals. The performance of the proposed classification algorithm is evaluated in terms of precision, sensitivity, specificity, accuracy with average values of 94.8%, 93.5%, 94.7%, 94.1%, respectively, and average area under the receiver operating characteristic (ROC) curve equal to 0.985. These results indicate a good performance of the proposed algorithm in classifying grasp-and-lift events from EEG signals.
  16. Khan DM, Yahya N, Kamel N, Faye I
    Comput Methods Programs Biomed, 2023 Jan;228:107242.
    PMID: 36423484 DOI: 10.1016/j.cmpb.2022.107242
    BACKGROUND AND OBJECTIVE: Brain connectivity plays a pivotal role in understanding the brain's information processing functions by providing various details including magnitude, direction, and temporal dynamics of inter-neuron connections. While the connectivity may be classified as structural, functional and causal, a complete in-vivo directional analysis is guaranteed by the latter and is referred to as Effective Connectivity (EC). Two most widely used EC techniques are Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) which are based on multivariate autoregressive models. The drawbacks of these techniques include poor frequency resolution and the requirement for experimental approach to determine signal normalization and thresholding techniques in identifying significant connectivities between multivariate sources.

    METHODS: In this study, the drawbacks of DTF and PDC are addressed by proposing a novel technique, termed as Efficient Effective Connectivity (EEC), for the estimation of EC between multivariate sources using AR spectral estimation and Granger causality principle. In EEC, a linear predictive filter with AR coefficients obtained via multivariate EEG is used for signal prediction. This leads to the estimation of full-length signals which are then transformed into frequency domain by using Burg spectral estimation method. Furthermore, the newly proposed normalization method addressed the effect on each source in EEC using the sum of maximum connectivity values over the entire frequency range. Lastly, the proposed dynamic thresholding works by subtracting the first moment of causal effects of all the sources on one source from individual connections present for that source.

    RESULTS: The proposed method is evaluated using synthetic and real resting-state EEG of 46 healthy controls. A 3D-Convolutional Neural Network is trained and tested using the PDC and EEC samples. The result indicates that compared to PDC, EEC improves the EEG eye-state classification accuracy, sensitivity and specificity by 5.57%, 3.15% and 8.74%, respectively.

    CONCLUSION: Correct identification of all connections in synthetic data and improved resting-state classification performance using EEC proved that EEC gives better estimation of directed causality and indicates that it can be used for reliable understanding of brain mechanisms. Conclusively, the proposed technique may open up new research dimensions for clinical diagnosis of mental disorders.

  17. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
  18. Yuan Li EW, Sahab SH, Yahya N, Abdullah MK, Hashim ND
    Cureus, 2023 Aug;15(8):e44287.
    PMID: 37779761 DOI: 10.7759/cureus.44287
    Preauricular sinus is a common congenital external ear anomaly. It occurs due to the incomplete fusion of hillocks of His of the first and second branchial arches. Tuberculosis (TB) is endemic in Malaysia, which imposes a major public health problem. It is caused by Mycobacterium tuberculosis, which causes chronic, recurrent diseases and poor healing of a wound. Pulmonary TB is the most common form of infection, some manifesting as extrapulmonary TB. We share our experience in managing a series of three patients with recurrent tuberculous preauricular sinus abscesses in different age groups. Testing for acid-fast bacilli is highly advocated in recurrent cases and in extensive infection of preauricular sinuses despite the absence of systemic or pulmonary symptoms. Treatment with anti-tuberculous drugs is commenced, followed by an elective sinus excision once the patient is free from infection to prevent recurrence.
  19. Manan HA, Yahya N, Han P, Hummel T
    Brain Struct Funct, 2022 Jan;227(1):177-202.
    PMID: 34635958 DOI: 10.1007/s00429-021-02397-3
    Brain structural features of healthy individuals are associated with olfactory functions. However, due to the pathophysiological differences, congenital and acquired anosmia may exhibit different structural characteristics. A systematic review was undertaken to compare brain structural features between patients with congenital and acquired anosmia. A systematic search was conducted using PubMed/MEDLINE and Scopus electronic databases to identify eligible reports on anosmia and structural changes and reported according to PRISMA guidelines. Reports were extracted for information on demographics, psychophysical evaluation, and structural changes. Then, the report was systematically reviewed based on various aetiologies of anosmia in relation to (1) olfactory bulb, (2) olfactory sulcus, (3) grey matter (GM), and white matter (WM) changes. Twenty-eight published studies were identified. All studies reported consistent findings with strong associations between olfactory bulb volume and olfactory function across etiologies. However, the association of olfactory function with olfactory sulcus depth was inconsistent. The present study observed morphological variations in GM and WM volume in congenital and acquired anosmia. In acquired anosmia, reduced olfactory function is associated with reduced volumes and thickness involving the gyrus rectus, medial orbitofrontal cortex, anterior cingulate cortex, and cerebellum. These findings contrast to those observed in congenital anosmia, where a reduced olfactory function is associated with a larger volume and higher thickness in parts of the olfactory network, including the piriform cortex, orbitofrontal cortex, and insula. The present review proposes that the structural characteristics in congenital and acquired anosmia are altered differently. The mechanisms behind these changes are likely to be multifactorial and involve the interaction with the environment.
  20. Al-Hiyali MI, Yahya N, Faye I, Hussein AF
    Sensors (Basel), 2021 Aug 04;21(16).
    PMID: 34450699 DOI: 10.3390/s21165256
    The functional connectivity (FC) patterns of resting-state functional magnetic resonance imaging (rs-fMRI) play an essential role in the development of autism spectrum disorders (ASD) classification models. There are available methods in literature that have used FC patterns as inputs for binary classification models, but the results barely reach an accuracy of 80%. Additionally, the generalizability across multiple sites of the models has not been investigated. Due to the lack of ASD subtypes identification model, the multi-class classification is proposed in the present study. This study aims to develop automated identification of autism spectrum disorder (ASD) subtypes using convolutional neural networks (CNN) using dynamic FC as its inputs. The rs-fMRI dataset used in this study consists of 144 individuals from 8 independent sites, labeled based on three ASD subtypes, namely autistic disorder (ASD), Asperger's disorder (APD), and pervasive developmental disorder not otherwise specified (PDD-NOS). The blood-oxygen-level-dependent (BOLD) signals from 116 brain nodes of automated anatomical labeling (AAL) atlas are used, where the top-ranked node is determined based on one-way analysis of variance (ANOVA) of the power spectral density (PSD) values. Based on the statistical analysis of the PSD values of 3-level ASD and normal control (NC), putamen_R is obtained as the top-ranked node and used for the wavelet coherence computation. With good resolution in time and frequency domain, scalograms of wavelet coherence between the top-ranked node and the rest of the nodes are used as dynamic FC feature input to the convolutional neural networks (CNN). The dynamic FC patterns of wavelet coherence scalogram represent phase synchronization between the pairs of BOLD signals. Classification algorithms are developed using CNN and the wavelet coherence scalograms for binary and multi-class identification were trained and tested using cross-validation and leave-one-out techniques. Results of binary classification (ASD vs. NC) and multi-class classification (ASD vs. APD vs. PDD-NOS vs. NC) yielded, respectively, 89.8% accuracy and 82.1% macro-average accuracy, respectively. Findings from this study have illustrated the good potential of wavelet coherence technique in representing dynamic FC between brain nodes and open possibilities for its application in computer aided diagnosis of other neuropsychiatric disorders, such as depression or schizophrenia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links