The X-ray single crystal analysis of isomeric ortho, meta, and para bromo-substituted α-methylsulfonyl-α-diethoxyphosphoryl acetophenones showed that this class of compound adopts synclinal (gauche) conformations for both [-P(O)(OEt)2] and [-S(O)2Me] groups, with respect to the carbonyl functional group. The phosphonate, sulfonyl, and carbonyl functional groups are joined through an intramolecular network of attractive interactions, as detected by molecular orbital calculations at the M06-2X/6-31G(d,p) level. These interactions are responsible for the more stable conformations in the gas phase, which also persist in the solid-state structures. The main structural distinction in the title compounds relates to the torsion angle of the aryl group (with respect to the carbonyl group), which gives rise to different interactions in the crystal packing, due to the different positions of the Br atom.
2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31-27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
Atopic dermatitis (AD) is a chronic, allergic inflammatory skin disorder that lacks a definite cure. Using a mouse DNCB-induced AD-like skin lesions model, this study evaluated the potential therapeutic utility of tHGA as an oral and topical treatment for AD. Male BALB/c mice were sensitised and challenged with 1% and 0.5% DNCB on their shaved dorsal skin. Mice in the treatment group were administered tHGA (20, 40, and 80 mg/kg) orally three times per week for 2 weeks, or tHGA (0.2%, 1%, and 5%) topically once daily for 12 days. On day 34, the mice were euthanized, and blood and dorsal skin samples were obtained for analysis. All doses of orally and topically administered tHGA significantly improved scratching, epidermal thickness, blood eosinophilia and mast cell infiltration. There was a minor discrepancy between the two routes of administration, with orally treated tHGA showing significant reductions in Scoring of Atopic Dermatitis (SCORAD), tissue eosinophil infiltration, serum IgE and skin IL-4 levels with treatment of 40 and 80 mg/kg tHGA, whereas topically applied tHGA showed significant reductions in all dosages. These findings suggest that tHGA exhibited therapeutic potential for AD as both oral and topical treatment ameliorates AD-like symptoms in the murine model.
Matched MeSH terms: Acetophenones/administration & dosage; Acetophenones/pharmacology; Acetophenones/therapeutic use
An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P2₁/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.
This study reports on the effects of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) and modified autohydrolyzed ethanol organosolv lignin on the structural characteristics and antioxidant properties upon incorporation of p-hydroxyacetophenone (AHP EOL). The lignin samples isolated from black liquor of oil palm fronds (OPF) were evaluated and compared using various complementary analyses; FTIR, 1H and 13C NMR spectroscopy, 2D-NMR spectroscopy (HMBC and HSQC), CHN, GPC, HPLC and thermal analyses (TGA and DSC). Chemically modified organosolv lignin (AHP EOL) provided lignin with lower molecular weight (Mw), which has smaller fragments that leads to higher solubility rate in water in comparison to unmodified organosolv lignin, AH EOL (DAHP EOL: 19.8% > DAH EOL: 14.0%). It was evident that the antioxidant properties of modified organosolv lignin has better reducing power in comparison to the unmodified organosolv lignin. Therefore, the functionalization of lignin polymers enhanced their antioxidant properties and structural features towards a various alternative approach in lignin-based applications.
Molecular structure and properties of 1-(2-hydroxy-4,5-dimethylphenyl)ethanone were experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of the reported compound were supported with computational studies using the density functional theory (DFT), with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set. Potential energy distribution (PED) and potential energy surface (PES) analyses were performed to identify characteristic frequencies and reliable conformational analysis correspondingly. The compound crystallizes in monoclinic space group C2/c with the CO up-OH down conformation. There is a good agreement between the experimentally determined geometrical parameters and vibrational frequencies of the compound to those predicted theoretically.
In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.
Paeonol is a phenolic compound isolated mainly from Moutan cortex, root bark of Chinese Peony tree. Moutan cortex holds a significant value in traditional Chinese medicine for alleviating various oxidative stress-related diseases mainly atherosclerosis and myocardial infarction. The present study seeks to identify the protective mechanisms of paeonol in oxidative stress-induced premature senescence in endothelial cells.
A bioassay-guided investigation of Melicope ptelefolia Champ ex Benth (Rutaceae) resulted in the identification of an acyphloroglucinol, 2,4,6-trihydroxy-3-geranylacetophenone or tHGA, as the active principle inhibiting soybean 15-LOX. The anti-inflammatory action was also demonstrated on human leukocytes, where the compound showed prominent inhibitory activity against human PBML 5-LOX, with an IC(50) value of 0.42 μM, very close to the effect produced by the commonly used standard, NDGA. The compound concentration-dependently inhibited 5-LOX product synthesis, specifically inhibiting cysteinyl leukotriene LTC(4) with an IC(50) value of 1.80 μM, and showed no cell toxicity effects. The anti-inflammatory action does not seem to proceed via redox or metal chelating mechanism since the compound tested negative for these bioactivities. Further tests on cyclooxygenases indicated that the compound acts via a dual LOX/COX inhibitory mechanism, with greater selectivity for 5-LOX and COX-2 (IC(50) value of 0.40 μM). The molecular features that govern the 5-LOX inhibitory activity was thus explored using in silico docking experiments. The residues Ile 553 and Hie 252 were the most important residues in the interaction, each contributing significant energy values of -13.45 (electrostatic) and -5.40 kcal/mol (electrostatic and Van der Waals), respectively. The hydroxyl group of the phloroglucinol core of the compound forms a 2.56Å hydrogen bond with the side chain of the carboxylate group of Ile 553. Both Ile 553 and Hie 252 are crucial amino acid residues which chelate with the metal ion in the active site. Distorting the geometry of these ligands could be the reason for the inhibition activity shown by tHGA. The molecular simulation studies supported the bioassay results and served as a good model for understanding the way tHGA binds in the active site of human 5-LOX enzyme.
Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
Matched MeSH terms: Acetophenones/administration & dosage; Acetophenones/pharmacology*; Acetophenones/therapeutic use
The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.
Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants.
Oxidative stress is involved in the pathogenesis of a number of diseases including hypertension and renal failure. There is enhanced expression of nicotinamide adenine dinucleotide (NADPH oxidase) and therefore production of hydrogen peroxide (H2O2) during renal disease progression. This study investigated the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on Cyclosporine A (CsA) nephrotoxicity in Wistar-Kyoto rats. Rats received CsA (25mg/kg/day via gavage) and were assigned to vehicle, apocynin (2.5mmol/L p.o.), catalase (10,000U/kg/day i.p.) or apocynin plus catalase for 14 days. Renal functional and hemodynamic parameters were measured every week, and kidneys were harvested at the end of the study for histological and NADPH oxidase 4 (NOX4) assessment. Oxidative stress markers and blood urea nitrogen (BUN) were measured. CsA rats had higher plasma malondialdehyde (by 340%) and BUN (by 125%), but lower superoxide dismutase and total antioxidant capacity (by 40%, all P<0.05) compared to control. CsA increased blood pressure (by 46mmHg) and decreased creatinine clearance (by 49%, all P<0.05). Treatment of CsA rats with apocynin, catalase, and their combination decreased blood pressure to near control values (all P<0.05). NOX4 mRNA activity was higher in the renal tissue of CsA rats by approximately 63% (P<0.05) compared to controls but was reduced in apocynin (by 64%), catalase (by 33%) and combined treatment with apocynin and catalase (by 84%) compared to untreated CsA rats. Treatment of CsA rats with apocynin, catalase, and their combination prevented hypertension and restored renal functional parameters and tissue Nox4 expression in this model. NADPH inhibition and H2O2 scavenging is an important therapeutic strategy during CsA nephrotoxicity and hypertension.
Reactive oxygen species (ROS) such as superoxide (O2-) generated by NAD(P)H oxidases have emerged as important molecules in blood pressure regulation. This study investigated the effect of apocynin and catalase on blood pressure and renal haemodynamic and excretory function in an L-NAME induced hypertension model. Forty Male Wistar-Kyoto (WKY) rats (n=8 per group) were treated with either: vehicle (WKY-C); L-NAME (WKY-L, 15 mg/kg/day in drinking fluid); WKY-L given apocynin to block NAD(P)H oxidase (WKY-LApo, 73 mg/kg/day in drinking water.); WKY-L given catalase to enhance ROS scavenging (WKY-LCat, 10000 U/kg/day i.p.); and WKY-L receiving apocynin plus catalase (WKY-LApoCat) daily for 14 days. L-NAME elevated systolic blood pressure (SBP), 116+/-1 to 181±4 mmHg, reduced creatinine clearance, 1.69+/-0.26 to 0.97+/-0.05 ml/min/kg and fractional sodium excretion, 0.84+/-0.09 to 0.55+/-0.09 % at day 14. Concomitantly, plasma malondialdehyde (MDA) increased six fold, while plasma total superoxide dismutase (T-SOD), plasma nitric oxide (NO) and plasma total antioxidant capacity (T-AOC) were decreased by 60-70 % and Nox 4 mRNA expression was increased 2-fold. Treatment with apocynin and catalase attenuated the increase in SBP and improved renal function, enhanced antioxidative stress capacity and reduced the magnitude of Nox4 mRNAs expression in the L-NAME treated rats. This study demonstrated that apocynin and catalase offset the development of L-NAME induced hypertension, renal dysfunction and reduced oxidative stress status, possibly contributed by a reduction in Nox4 expression during NOS inhibition. These findings would suggest that antioxidant compounds such as apocynin and catalase have potential in treating cardiovascular diseases.
Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics.