Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Al-Samarrai G, Singh H, Syarhabil M
    Ann Agric Environ Med, 2012;19(4):673-6.
    PMID: 23311787
    Fungicides are widely used in conventional agriculture to control plant diseases. Prolonged usage often poses health problems as modern society is becoming more health-conscious. Penicillium digitatum, the cause of citrus green mould, is an important postharvest pathogen which causes serious losses annually. The disease is currently managed with synthetic fungicides. There is, however, a growing concern globally about the continuous use of synthetic chemicals on food crops because of their potential effects on human health and the environment.
    Matched MeSH terms: Angiosperms/chemistry*
  2. Nordin N, Majid NA, Othman R, Omer FAA, Nasharuddin MNA, Hashim NM
    Apoptosis, 2018 02;23(2):152-169.
    PMID: 29430581 DOI: 10.1007/s10495-018-1447-x
    Plagioneurin B belongs to acetogenin group has well-established class of compounds. Acetogenin group has attracted worldwide attention in the past few years due their biological abilities as inhibitors for several types of tumour cells. Plagioneurin B was isolated via conventional chromatography and tested for thorough mechanistic apoptosis activity on human ovarian cancer cells (CAOV-3). Its structure was also docked at several possible targets using Autodock tools software. Our findings showed that plagioneurin B successfully inhibits the growth of CAOV-3 cells at IC50 of 0.62 µM. The existence of apoptotic bodies, cell membrane blebbing and chromatin condensation indicated the hallmark of apoptosis. Increase of Annexin V-FITC bound to phosphatidylserine confirmed the apoptosis induction in the cells. The apoptosis event was triggered through the extrinsic and intrinsic pathways via activation of caspases 8 and 9, respectively. Stimulation of caspase 3 and the presence of DNA ladder suggested downstream apoptotic signalling were initiated. Further confirmation of apoptosis was conducted at the molecular levels where up-regulation in Bax, as well as down-regulation of Bcl-2, Hsp-70 and survivin were observed. Plagioneurin B was also seen to arrest CAOV-3 cells cycle at the G2/M phase. Docking simulation of plagioneurin B with CD95 demonstrated that the high binding affinity and hydrogen bonds formation may explain the capability of plagioneurin B to trigger apoptosis. This study is therefore importance in finding the effective compound that may offer an alternative drug for ovarian cancer treatment.
    Matched MeSH terms: Angiosperms/chemistry*
  3. Zakaria ZA, Mohd Sani MH, Cheema MS, Kader AA, Kek TL, Salleh MZ
    PMID: 24555641 DOI: 10.1186/1472-6882-14-63
    Muntingia calabura (Elaecoparceae) is a medicinal plant traditionally used, particularly, by the Peruvian people to alleviate headache and cold, pain associated with gastric ulcers or to reduce the prostate gland swelling. Following the recent establishment of antinociceptive activity of M. calabura leaf, the present study was performed to further elucidate on the possible mechanisms of antinociception involved.
    Matched MeSH terms: Angiosperms/chemistry*
  4. Zakaria ZA, Balan T, Azemi AK, Omar MH, Mohtarrudin N, Ahmad Z, et al.
    BMC Complement Altern Med, 2016 Feb 24;16:78.
    PMID: 26912079 DOI: 10.1186/s12906-016-1041-0
    BACKGROUND: Muntingia calabura L. (family Muntingiaceae), commonly known as Jamaican cherry or kerukup siam in Malaysia, is used traditionally to treat various ailments. The aim of this study is to elucidate the possible underlying gastroprotective mechanisms of ethyl acetate fraction (EAF) of Muntingia calabura methanolic leaves extract (MEMC).

    METHODS: MEMC and its fractions were subjected to HPLC analysis to identify and quantify the presence of its phyto-constituents. The mechanism of gastroptotection of EAF was further investigated using pylorus ligation-induced gastric lesion rat model (100, 250, and 500 mg/kg). Macroscopic analysis of the stomach, evaluation of gastric content parameters such as volume, pH, free and total acidity, protein estimation, and quantification of mucus were carried out. The participation of nitric oxide (NO) and sulfhydryl (SH) compounds was evaluated and the superoxide dismutase (SOD), gluthathione (GSH), catalase (CAT), malondialdehyde (MDA), prostaglandin E2 (PGE2) and NO level in the ethanol induced stomach tissue homogenate was determined.

    RESULTS: HPLC analysis confirmed the presence of quercetin and gallic acid in EAF. In pylorus-ligation model, EAF significantly (p <0.001) prevent gastric lesion formation. Volume of gastric content and total protein content reduced significantly (p 

    Matched MeSH terms: Angiosperms/chemistry*
  5. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Angiosperms/chemistry
  6. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Angiosperms/chemistry*
  7. Al-Obaidi JR, Halabi MF, AlKhalifah NS, Asanar S, Al-Soqeer AA, Attia MF
    Biol Res, 2017 Aug 24;50(1):25.
    PMID: 28838321 DOI: 10.1186/s40659-017-0131-x
    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.
    Matched MeSH terms: Angiosperms/chemistry
  8. Sahari J, Sapuan SM, Zainudin ES, Maleque MA
    Carbohydr Polym, 2013 Feb 15;92(2):1711-6.
    PMID: 23399210 DOI: 10.1016/j.carbpol.2012.11.031
    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.
    Matched MeSH terms: Angiosperms/chemistry*
  9. Siva R, Valarmathi TN, Palanikumar K, Samrot AV
    Carbohydr Polym, 2020 Sep 15;244:116494.
    PMID: 32536404 DOI: 10.1016/j.carbpol.2020.116494
    In recent days, there is an increasing use of green composites in composite manufacturing, where cellulosic natural fibers have been started using for this purpose. In line with this, a novel cellulose fiber was extracted from the Kigelia africana fruit and its physical, chemical and thermal properties, crystallography and surface morphology analysis were studied and reported in this investigative research paper. The physical analysis revealed the mean tensile strength as 50.31 ± 24.71 to 73.12 ± 32.48 MPa, diameter as 0.507 ± 0.162 to 0.629 ± 0.182 mm and density as 1.316 g/cm³ for the Kigelia africana fiber. The proximate chemical analysis estimated the cellulose percentage to be 61.5 % and the existence of different basic components like cellulose, hemicellulose and lignin are confirmed by Fourier transform infrared spectroscopy analysis. Thermogravimetric analysis establishes the thermal stability of the fiber as 212 ⁰C. The crystallinity index, 57.38 % of the fiber was determined by X-ray diffraction. Surface morphology by field emission scanning electron microscopy reveals the presence of protrusions in fiber which aid in the better adhesion with the matrix in composite manufacturing.
    Matched MeSH terms: Angiosperms/chemistry*
  10. Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, et al.
    Chin J Nat Med, 2017 Jul;15(7):505-514.
    PMID: 28807224 DOI: 10.1016/S1875-5364(17)30076-6
    Considering the great potential of natural products as anticancer agents, the present study was designed to explore the molecular mechanisms responsible for anticancer activities of Mesua ferrea stem bark extract against human colorectal carcinoma. Based on MTT assay results, bioactive sub-fraction (SF-3) was selected for further studies using HCT 116 cells. Repeated column chromatography resulted in isolation of less active α-amyrin from SF-3, which was identified and characterized by GC-MS and HPLC methods. α-amyrin and betulinic acid contents of SF-3 were measured by HPLC methods. Fluorescent assays revealed characteristic apoptotic features, including cell shrinkage, nuclear condensation, and marked decrease in mitochondrial membrane potential in SF-3 treated cells. In addition, increased levels of caspases-9 and -3/7 levels were also observed in SF-3 treated cells. SF-3 showed promising antimetastatic properties in multiple in vitro assays. Multi-pathway analysis revealed significant down-regulation of WNT, HIF-1α, and EGFR with simultaneous up-regulation of p53, Myc/Max, and TGF-β signalling pathways in SF-3 treated cells. In addition, promising growth inhibitory effects were observed in SF-3 treated HCT 116 tumour spheroids, which give a hint about in vivo antitumor efficacy of SF-3 phytoconstituents. In conclusion, these results demonstrated that anticancer effects of SF-3 towards colon cancer are through modulation of multiple molecular pathways.
    Matched MeSH terms: Angiosperms/chemistry*
  11. Isa N, Lockman Z
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11482-11495.
    PMID: 30806934 DOI: 10.1007/s11356-019-04583-7
    Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
    Matched MeSH terms: Angiosperms/chemistry*
  12. Aung HH, Chia LS, Goh NK, Chia TF, Ahmed AA, Pare PW, et al.
    Fitoterapia, 2002 Aug;73(5):445-7.
    PMID: 12165348
    Plumbagin, isoshinanolone, epishinanolone, shinanolone, quercetin and kaempferol were isolated from the leaves of Nepenthes gracilis. Spectral data of shinanolone are presented.
    Matched MeSH terms: Angiosperms/chemistry*
  13. Zaid RM, Mishra P, Tabassum S, Wahid ZA, Sakinah AMM
    Int J Biol Macromol, 2019 Dec 01;141:1147-1157.
    PMID: 31494156 DOI: 10.1016/j.ijbiomac.2019.09.017
    The effect of physicochemical treatment on pectin yield, degree of esterification, along with the kinetics and thermodynamics characteristics was investigated in the present study. Several extraction parameters were observed to have impacted the yield and degree of esterification significantly, and the best extraction condition was as follows: agitation rate of 250 rpm, temperature of 70 °C, extraction time of 120 min, pH 2, and liquid to solid ratio of 10 v/w which has resulted in 28.20% of pectin yield, with DE (degree of esterification) of 57.00%. A theoretical model which describes the extractability, dissolution and degradation rate of pectin to predict the maximal yield at the maximal time was established to study the extraction kinetics of pectin from HPP. The kinetic analysis from Panchev's model shows the extraction rate was found highest at LSR 10 with ymax 30.85%. The calculated activation energy for pectin dissolution and degradation was found to be 4.532 kJ/mol and 28.054 kJ/mol, respectively. The thermodynamic study has suggested that the process was endothermic, spontaneous and reversible. These results suggest that the physical and chemical treatment applied could be an efficient technique for the extraction of pectin from Hylocereus polyrhizus peels.
    Matched MeSH terms: Angiosperms/chemistry*
  14. Wong JY, Matanjun P, Ooi YB, Chia KF
    Int J Food Sci Nutr, 2013 Aug;64(5):621-31.
    PMID: 23368987 DOI: 10.3109/09637486.2013.763910
    This study was carried out to characterize phenolic compounds, carotenoids, vitamins and the antioxidant activity of selected wild edible plants. Plant extracts were purified, and phenolic compounds comprising 11 phenolic acids (hydroxybenzoic acid and hydrocinnamic acid) and 33 flavonoids (including catechin, glycosides and aglycones) were analysed using High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD). Furthermore, the contents of ascorbic acid and tocopherol ((α and γ tocopherol) and carotenoids (lutein and β-carotene) were also determined. The major phenolics identified consisted of glycosides of flavones (apigenin and luteolin) and flavonols (kaempferol and quercetin). Among the phenolic acids identified after hydrolysis, coumaric acid was the predominant phenolic acid in all the extracts of wild plants. Ascorbic acid [53.8 mg/100 g fresh weight (FW)] and β-carotene (656.5 mg/100 g FW) showed the highest content in the leaf of Heckeria umbellatum. In conclusion, the leaves of H. umbellatum, Aniseia martinicensis and Gonostegia hirta have excellent potential in the future to emerge as functional ingredients.
    Matched MeSH terms: Angiosperms/chemistry*
  15. Juanssilfero AB, Kahar P, Amza RL, Yopi, Sudesh K, Ogino C, et al.
    J Biosci Bioeng, 2019 Jun;127(6):726-731.
    PMID: 30642786 DOI: 10.1016/j.jbiosc.2018.12.002
    The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.
    Matched MeSH terms: Angiosperms/chemistry*
  16. Agatonovic-Kustrin S, Morton DW, Adam A, Mizaton HH, Zakaria H
    J Chromatogr A, 2017 Dec 29;1530:192-196.
    PMID: 29132827 DOI: 10.1016/j.chroma.2017.11.012
    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content.
    Matched MeSH terms: Angiosperms/chemistry*
  17. Choo CY, Chan KL, Sam TW, Hitotsuyanagi Y, Takeya K
    J Ethnopharmacol, 2001 Sep;77(1):129-31.
    PMID: 11483390
    The plant, Typhonium flagelliforme (Araceae), commonly known as the "rodent tuber" in Malaysia, is often used as an essential ingredient of herbal remedies for alternative cancer therapies. The hexane extract of this plant was evaluated for cytotoxic activity against in vitro culture on P388 murine leukaemia cells and showed weak IC(50) of 15 microg/ml. The partial chemical constituents were identified as methyl esters of hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid and 9,12-octadecadienoic acid. In addition, several common aliphatics were identified as dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane and eicosane. The unique methyl ester of 13-phenyltridecanoic acid was isolated and positively identified using spectroscopic methods. None of the identified compounds showed or are known to have cytotoxic behaviour.
    Matched MeSH terms: Angiosperms/chemistry*
  18. Ong CY, Ling SK, Ali RM, Chee CF, Samah ZA, Ho AS, et al.
    J. Photochem. Photobiol. B, Biol., 2009 Sep 4;96(3):216-22.
    PMID: 19647445 DOI: 10.1016/j.jphotobiol.2009.06.009
    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures. Our results suggest that the main photosensitisers from terrestrial plants are likely based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in minor amounts or are not as active as those with the cyclic tetrapyrrole structure.
    Matched MeSH terms: Angiosperms/chemistry
  19. Abdul Wahab N, Ahdan R, Ahmad Aufa Z, Kong KW, Johar MH, Shariff Mohd Z, et al.
    J Sci Food Agric, 2015 Oct;95(13):2704-11.
    PMID: 25410129 DOI: 10.1002/jsfa.7006
    Diverse plants species in the forest remain under-utilised and they are mainly consumed only by local people. However, increasing issues in food security prompted the present study, which explores the nutritional and antioxidant aspects of Malaysian under-utilised vegetables. The studied vegetables were Paku Nyai (Stenochlaena palustris), Cemperai (Champereia manillana), Maman Pasir (Cleome viscose), Dudung (Erechtites valerianifolia) and Semambuk (Ardisia pendula).
    Matched MeSH terms: Angiosperms/chemistry
  20. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Angiosperms/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links