Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Permana D, Lajis NH, Othman AG, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 1999 Oct;62(10):1430-1.
    PMID: 10543909
    A new anthraquinone, 2-hydroxymethyl-10-hydroxy-1,4-anthraquinone (1), was isolated from Hedyotis herbacea along with three other known derivatives: 1,4-dihydroxy-2-hydroxymethylanthraquinone (2); 2, 3-dimethoxy-9-hydroxy-1,4-anthraquinone; and 1,4-dihydroxy-2, 3-dimethoxyanthraquinone. The structure of 1 was determined based on analysis of its spectroscopic data.
    Matched MeSH terms: Anthraquinones
  2. Abdullah MA, Ariff AB, Marziah M, Ali AM, Lajis NH
    J Agric Food Chem, 2000 Sep;48(9):4432-8.
    PMID: 10995375
    The effects of medium strategy, number of impellers, aeration mode, and mode of operation on Morinda elliptica cell suspension cultures in a stirred-tank bioreactor are described. A lower number of impellers and continuous aeration contributed toward high cell growth rate, whereas a higher number of impellers reduced cell growth rate, although not anthraquinone yield. The semicontinuous mode could indirectly imitate the larger scale version of production medium strategy and improved anthraquinone production even with 0. 012% (v/v) antifoam addition. Production medium promoted both growth (maximum dry cell weight of 24.6 g/L) and anthraquinone formation (maximum content of 19.5 mg/g of dry cell weight), without any necessity for antifoam addition. Cultures in production medium or with higher growth rate and anthraquinone production were less acidic than cultures in growth medium or with lower growth rate and anthraquinone production. Using the best operating variables, growth of M. elliptica cells (24.6 g/L) and anthraquinone yield (0.25 g/L) were 45% and 140%, respectively, lower than those using a shake flask culture after 12 days of cultivation.
    Matched MeSH terms: Anthraquinones/metabolism*
  3. bin Hussein MZ, Zainal Z, Hin TY, Tat OW
    PMID: 15040529
    Nanocomposites of Zn/Al-layered double hydroxide(anthraquinone-2,6-disulfonate) were synthesized by spontaneous direct assembly of inorganic and organic phases from aqueous solution. Powder X-ray diffraction patterns showed that a pure, single nanocomposite phase of good crystallinity was obtained using 1.0 M antraquinone-2,6-disulfonate ion (AQ26) and aging at 80 degrees C using conventional heating for 7 days or 0.5 h under microwave radiation, and these samples are denoted as ZAAN26C or ZAAN26MH, respectively. Zn/Al-nitrate-layered double hydroxide synthesized by a conventional method (ZANLC) showed a basal spacing of 8.3 A while both the nanocomposites showed 18.8 A as a result of AQ26 intercalation. FTIR study showed that the resulting nanocomposites are free from nitrate, the co-anion present in the mother liquor, indicating that only AQ26 is preferred during intercalation for the formation of the nanocomposite. The Brunauer, Emmet and Teller (BET) and micropore surface areas for ZAAN26C decreased relative to the ZANLC from 16.2 to 4.7 and 1.6 to 1.3 m2/g, respectively. These results indicate that AQ26 can be rapidly interdcalated in layered double hydroxide using microwave-aging resulting in a nanocomposite.
    Matched MeSH terms: Anthraquinones/radiation effects; Anthraquinones/chemistry*
  4. Ling SK, Komorita A, Tanaka T, Fujioka T, Mihashi K, Kouno I
    Chem Pharm Bull (Tokyo), 2002 Aug;50(8):1035-40.
    PMID: 12192133
    A further investigation of the leaves and stems of Saprosma scortechinii afforded 13 compounds, of which 10 are new compounds. These were elucidated as the bis-iridoid glucosides, saprosmosides G (1) and H (2), the iridoid glucoside, 6-O-epi-acetylscandoside (3), and the anthraquinones, 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (5), 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (6), 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone (7), 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (8), 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-beta-primeveroside (9), and 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (10). Structure assignments for all compounds were established by means of mass and NMR spectroscopies, chemical methods, and comparison with published data. The new anthraquinones were derivatives of munjistin and lucidin.
    Matched MeSH terms: Anthraquinones/isolation & purification*; Anthraquinones/chemistry
  5. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    Matched MeSH terms: Anthraquinones/metabolism*
  6. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
    Matched MeSH terms: Anthraquinones/chemistry*
  7. Marzuki, A.F., Masudi, S.M.
    MyJurnal
    Dentin morphology and the lesion found in dental caries have been studied for many years. It was first observed under optical microscopy, and later using electron microscopy. Confocal laser scanning microscopy (CLSM) applied with several fluorescent dyes such as alizarin red to see normal dentinal tubules. However, as far as authors aware, the CLSM studies of dentinal tubules in human caries using alizarin red is rare. The aim of this study is to examine histopathological and morphological changes in dentinal tubules of dentin caries stained with alizarin red using CLSM. Fifteen extracted carious teeth (premolar or molar) was collected and fixed in neutral formalin solution buffered with phosphate buffer, rinsed and stored in calcium free phosphate buffer saline (PBS) at 4°C. The specimens were dehydrated and embedded in resin. Longitudinal or cross sections were cut and polished and then stained with alizarin red S (100 μg/ml) in 0.5 M HCl solution for 24-48 hour at 37°C. After dehydration specimens were mounted on glass slide and examined under CLSM using epi-flourescent mode or transmission light mode with wave length of 512 nm. The images of dentinal tubules were taken serially and optimum images of three-dimensional structures were reconstructed using software of CLSM. Histopathological changes of dentinal tubules in human caries showed area of demineralized dentin, translucent zone, and normal area. The dentinal tubules were thin and had numerous branches. In conclusion, confocal microscopy revealed Study shows that confocal microscopy revealed histopathological changes in dentinal tubules affected by carious lesions.
    Matched MeSH terms: Anthraquinones
  8. Azlan K, Wan Saime WN, Lai Ken L
    J Environ Sci (China), 2009;21(3):296-302.
    PMID: 19634439
    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.
    Matched MeSH terms: Anthraquinones/chemistry
  9. Ee GC, Wen YP, Sukari MA, Go R, Lee HL
    Nat Prod Res, 2009;23(14):1322-9.
    PMID: 19735047 DOI: 10.1080/14786410902753138
    An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
    Matched MeSH terms: Anthraquinones/pharmacology; Anthraquinones/chemistry*
  10. Alitheen NB, Manaf AA, Yeap SK, Shuhaimi M, Nordin L, Mashitoh AR
    Pharm Biol, 2010 Apr;48(4):446-52.
    PMID: 20645725 DOI: 10.3109/13880200903168031
    Morinda elliptica Ridley (Rubiaceae) has been used traditionally as a medicine to treat various diseases in Malaysia and southeast Asia. In the present study we investigated the immunomodulatory effects of damnacanthal isolated from the roots of Morinda elliptica. The immunomodulatory effect of this compound was evaluated by using the lymphocyte proliferation assay with mouse thymocytes and human peripheral blood mononuclear cells (PBMC). In addition, the effect of the compound on PBMC cell cycle progression was studied by using flow cytometry. The production of human interleukin-2 and human inteleukin-12 cytokines was also assessed using the enzyme linked immunosorbent assay (ELISA) technique. The lymphocyte proliferation assay showed that damnacanthal was able to activate mouse thymocytes and PBMC at a low concentration (0.468 microg/mL). Moreover, the production of human interleukin-2 and human interleukin-12 cytokines in the culture supernatant from damnacanthal activated lymphocytes was markedly up-regulated at 24 h and sustained until 72 h with a slight decrease with time. A positive correlation was found between the level of these two cytokines and the MTT-based proliferation assay. Based on the above results, damnacanthal can act as an immunomodulatory agent which may be very useful for maintaining a healthy immune system.
    Matched MeSH terms: Anthraquinones/isolation & purification; Anthraquinones/pharmacology*
  11. Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM
    Molecules, 2010;15(10):7218-26.
    PMID: 20966871 DOI: 10.3390/molecules15107218
    Dichloromethane root extract of Rennellia elliptica Korth. showed strong inhibition of Plasmodium falciparum growth in vitro with an IC₅₀ value of 4.04 µg/mL. A phytochemical study of the dichloromethane root extract has led to the isolation and characterization of a new anthraquinone, 1,2-dimethoxy-6-methyl-9,10-anthraquinone (1), and ten known anthraquinones: 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (2), nordamnacanthal (3), 2-formyl-3-hydroxy-9,10-anthraquinone (4), damnacanthal (5), lucidin-ω-methyl ether (6), 3-hydroxy-2-methyl-9,10-anthraquinone (7), rubiadin (8), 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (9), rubiadin-1-methyl ether (10) and 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone (11). Structural elucidation of all compounds was accomplished by modern spectroscopic methods, notably 1D and 2D NMR, IR, UV and HREIMS. The new anthraquinone 1, 2-formyl-3-hydroxy-9,10-anthraquinone (4) and 3-hydroxy-2-methyl-9,10-anthraquinone (7) possess strong antiplasmodial activity, with IC₅₀ values of 1.10, 0.63 and 0.34 µM, respectively.
    Matched MeSH terms: Anthraquinones/pharmacology*; Anthraquinones/chemistry
  12. Ee, G.C.L., Jong, V.Y.M., Sukari, M.A., Lee, T.K., Tan, A.
    MyJurnal
    Our continuing interest in anthraquinones from the Guttiferae family has led us to look at the genus Cratoxylum. A detailed chemical study on Cratoxylum aborescens resulted in the isolation of three anthraquinones, namely 1,8-dihydroxy-3-methoxy-6-methylanthraquinone (1), vismiaquinone (2) and vismione (3). These compounds were identified using 1D and 2D NMR spectroscopy. This is the first report on the chemistry of Cratoxylum aborescens.
    Matched MeSH terms: Anthraquinones
  13. MyJurnal
    The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL-60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively. The cell cycle analysis exhibited that damnacanthal exerted its toxicity effect towards HL-60 cells by inducing apoptosis with value of 25% after 72 hours treatment. Thus, these compounds could be the potential anticancer drug with less toxic side effect.
    Matched MeSH terms: Anthraquinones
  14. Lim SH, Nowak-Sliwinska P, Kamarulzaman FA, van den Bergh H, Wagnières G, Lee HB
    Photochem Photobiol, 2010 Mar-Apr;86(2):397-402.
    PMID: 20074086 DOI: 10.1111/j.1751-1097.2009.00684.x
    In this study, the photodynamic therapy (PDT) induced efficacy of a semi-synthesized analogue 15(1)-hydroxypurpurin-7-lactone dimethyl ester or G2, in terms of chick chorioallantoic membrane blood vessel occlusion was evaluated in reference to verteporfin. Early formulation studies showed that G2 prepared in a system of cremophor EL 2.5% and ethanol 2.5% in saline was biocompatible up to 20 microL volume of injection. Following injection, G2 accumulation peaked within the first minute and its extravasation from intra- to extra-vascular occurred somewhat slower as compared with verteporfin. In the PDT study, closure of capillaries and small neovessels was observed with 4 microg per embryo of G2 and a light dose of 20 J cm(-2) at a fluence rate of 40 mW cm(-2) filtered at 400-440 nm-a result that may be considered optimum for the treatment of age-related macular degeneration (AMD). Also, partial occlusion of the large vessels was observed using the same dose of G2 and light-an effect which is desirable for cancer treatment. From this study, we conclude that G2 has the potential to be developed as a therapeutic agent for photodynamic treatment for AMD and cancer.
    Matched MeSH terms: Anthraquinones/pharmacology*; Anthraquinones/therapeutic use
  15. Hanafiah MA, Ngah WS, Zolkafly SH, Teong LC, Majid ZA
    J Environ Sci (China), 2012;24(2):261-8.
    PMID: 22655386
    The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.
    Matched MeSH terms: Anthraquinones/isolation & purification*
  16. Kew, Siang-Tong
    MyJurnal
    Melanosis coli denotes brownish discoloration of the colonic mucosa found on endoscopy
    or histopathologic examination. The condition has no specific symptom on its own. It is a fairly frequent incidental finding of colonic biopsies and resection specimens. The pigmentation is caused by apoptotic cells which are ingested by macrophages and subsequently transported into the lamina propria, where lysosomes use them to produce lipofuscin pigment, not melanin as the name suggests. Melanosis coli develops in over 70% of persons who use anthraquinone laxatives (eg cascara sagrada, aloe, senna, rhubarb, and frangula), often within 4 months of use. Long-term use is generally believed to be necessary to cause melanosis coli.The condition is widely regarded as benign and reversible, and disappearance of the pigment generally occurs within a year of stopping laxatives. Although
    often due to prolonged use of anthraquinone, melanosis can probably result from other factors or exposure to other laxatives. It has been reported as a consequence of longstanding inflammatory bowel disease. Some investigators suggested that increase in apoptosis of
    colonic mucosa by anthraquinone laxatives increased the risk of colonic cancer. Recent data, including those from large-scale retrospective, prospective and experimental studies, did not show any increased cancer risk.
    Matched MeSH terms: Anthraquinones
  17. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Anthraquinones
  18. Nor SM, Sukari MA, Azziz SS, Fah WC, Alimon H, Juhan SF
    Molecules, 2013 Jul 08;18(7):8046-62.
    PMID: 23884135 DOI: 10.3390/molecules18078046
    Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a-d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1-13.0 µg/mL).
    Matched MeSH terms: Anthraquinones/chemical synthesis*; Anthraquinones/pharmacology*; Anthraquinones/chemistry
  19. Akhtar MN, Zareen S, Yeap SK, Ho WY, Lo KM, Hasan A, et al.
    Molecules, 2013 Aug 20;18(8):10042-55.
    PMID: 23966087 DOI: 10.3390/molecules180810042
    Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
    Matched MeSH terms: Anthraquinones/pharmacology; Anthraquinones/chemistry*
  20. Abu N, Akhtar MN, Ho WY, Yeap SK, Alitheen NB
    Molecules, 2013 Aug 27;18(9):10367-77.
    PMID: 23985955 DOI: 10.3390/molecules180910367
    Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
    Matched MeSH terms: Anthraquinones/chemical synthesis; Anthraquinones/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links