Displaying publications 1 - 20 of 323 in total

Abstract:
Sort:
  1. de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, et al.
    Med Mycol, 2023 Feb 03;61(2).
    PMID: 36694950 DOI: 10.1093/mmy/myad009
    Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
    Matched MeSH terms: Antifungal Agents
  2. Zuhainis Saad W, Abdullah N, Alimon AR, Yin Wan H
    Anaerobe, 2008 Apr;14(2):118-22.
    PMID: 18083606
    The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.
    Matched MeSH terms: Antifungal Agents/pharmacology*
  3. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
    Matched MeSH terms: Antifungal Agents
  4. Zakuan, Z., Mustapa, S.A., Sukor, R., Rukayadi, Y.
    MyJurnal
    The filamentous spoilage fungi in vegetables can lead to significant impact in food and economic loss. In order to overcome this problem, chemical fungicide has been implemented in vegetable farming and processing but it causes problems towards environment and food safety. Thus, the utilization of natural products such as plants extracts, which exhibit antimicrobial and antifungal activity, is more acceptable to solve this problem. The aim of this study is to investigate the antifungal activity of Boesenbergia rotunda extract against ten filamentous spoilage fungi isolated from five vegetables. The extract was used to treat fungal isolates from vegetables; CRb 002 (Penicillium sp.), CHa 009 (Aspergillus sp.), TMa 001 (Geotrichum sp.), TMa 002 (Aspergillus sp), ONb 001 (Aspergillus sp.), WBb 003 and WBb 004 (Fusarium sp.) WBb 007 (unidentified), WBb 008 (Aureobasidium sp.) and WBb 010 (Penicillium sp.). The results showed that the yield of the extract of B. rotunda using ethanol (95%) was 11.42% (w/v). The 10% of B. rotunda extract exhibited antifungal activities against ten filamentous fungi after 5 days treatment with growth reduction of 41.56%, 30.68%, 86.20%, 50.62%, 26.67%, 47.44%, 50.74%, 36.39%, 42.86%, and 39.39% for WBb 008, WBb 004, WBb 007, WBb 003, CRb 002, WBb 010, CHa 009, TMa 001, ONb 001, and TMa 002, respectively. B. rotunda extract showed highest antifungal activity against fungi isolated from winged bean (WBb 007) with percentage reduction in growth was 86.20%, while the lowest activity was against fungi isolated from the carrot (CRb 002) with 26.67% reduction in growth. Generally, the TPC of fungi in the vegetable samples were reduced after treatment with 5% of B. rotunda extract at 5 min and 10 min of exposure time. The results suggested that B. rotunda extract has high potential to become natural food preservative which can reduce the fungi spoilage of vegetables.
    Matched MeSH terms: Antifungal Agents
  5. Zahari R, Halimoon N, Ahmad MF, Ling SK
    Int J Anal Chem, 2018;2018:8150610.
    PMID: 29692811 DOI: 10.1155/2018/8150610
    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.
    Matched MeSH terms: Antifungal Agents
  6. Yuen KH, Wong JW, Billa N, Choy WP, Julianto T
    Med J Malaysia, 1999 Dec;54(4):482-6.
    PMID: 11072466
    The bioavailability of a generic preparation of ketoconazole (Zorinax from Xepa-Soul Pattinson, Malaysia) was evaluated in comparison with the innovator product (Nizoral from Janssen Pharmaceutica, Switzerland). Eighteen healthy male volunteers participated in the study conducted according to a two-way crossover design. The bioavailability was compared using the parameters, total area under the plasma concentration-time curve (AUC0-infinity), peak plasma concentration (Cmax) and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the values of the two products in all the three parameters. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity and Cmax values of Zorinax over Nizoral was found to lie between 0.82-1.04 and 0.83-1.02, respectively, being within the acceptable equivalence limit of 0.80-1.25. These findings indicate that the two preparations are comparable in the extent and rate of absorption. In addition, the elimination rate constant (ke) and apparent volume of distribution (Vd) were calculated. For both parameters, there was no statistically significant difference between the values obtained from the data of the two preparations. Moreover, the values are comparable to those reported in the literature.
    Matched MeSH terms: Antifungal Agents/blood; Antifungal Agents/pharmacokinetics*
  7. Yuen KH, Peh KK
    J Chromatogr B Biomed Sci Appl, 1998 Sep 18;715(2):436-40.
    PMID: 9792531
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5-8000 ng/ml.
    Matched MeSH terms: Antifungal Agents/blood*; Antifungal Agents/pharmacokinetics
  8. Yenn TW, Lee CC, Ibrahim D, Zakaria L
    J Microbiol, 2012 Aug;50(4):581-5.
    PMID: 22923105 DOI: 10.1007/s12275-012-2083-8
    This study examined the effect of host extract in the culture medium on anti-candidal activity of Phomopsis sp. ED2, previously isolated from the medicinal herb Orthosiphon stamineus Benth. Interestingly, upon addition of aqueous host extract to the culture medium, the ethyl acetate extract prepared from fermentative broth exhibited moderate anti-candidal activity in a disc diffusion assay. The minimal inhibitory concentration of this extract was 62.5 μg/ml and it only exhibited fungistatic activity against C. albicans. In the time-kill study, a 50% growth reduction of C. albicans was observed at 31.4 h for extract from the culture incorporating host extract. In the bioautography assay, only one single spot (Rf 0.59) developed from the extract exhibited anti-candidal activity. A spot with the a similar Rf was not detected for the crude extract from YES broth without host extract. This indicated that the terpenoid anti-candidal compound was only produced when the host extract was introduced into the medium. The study concluded that the incorporation of aqueous extract of the host plant into the culture medium significantly enhanced the anti-candidal activity of Phomopsis sp. ED2.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/metabolism*
  9. Yee EY, Choon SE
    Cutis, 2018 Oct;102(4):223;230;231.
    PMID: 30489556
    Matched MeSH terms: Antifungal Agents/therapeutic use
  10. Yap FB
    Int J Infect Dis, 2011 Oct;15(10):e727-9.
    PMID: 21719337 DOI: 10.1016/j.ijid.2011.05.005
    Sporotrichosis is a subacute or chronic fungal infection caused by the ubiquitous fungus Sporothrix schenckii. Disseminated cutaneous sporotrichosis is an uncommon entity and is usually present in the immunosuppressed. Here, a case of disseminated cutaneous sporotrichosis in an immunocompetent patient is reported. This 70-year-old healthy woman presented with multiple painful ulcerated nodules on her face and upper and lower extremities of 6-month duration, associated with low-grade fever, night sweats, loss of appetite, and loss of weight. Histopathological examination of the skin biopsy revealed epidermal hyperplasia and granulomatous inflammation in the dermis, with budding yeast. Fungal culture identified S. schenckii. She had total resolution of the lesions after 2 weeks of intravenous amphotericin B and 8 months of oral itraconazole. All investigations for underlying immunosuppression and internal organ involvement were negative. This case reiterates that disseminated cutaneous sporotrichosis, although common in the immunosuppressed, can also be seen in immunocompetent patients.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  11. Yap FB, Thevarajah S, Asmah J
    Dermatol. Online J., 2010;16(7):2.
    PMID: 20673530
    Penicilliosis is a systemic fungal infection caused by Penicillium marneffei. The infection is most commonly seen in Southeast Asia, Southern China, Hong Kong, and Taiwan. It is rarely seen among individuals of African descent. Here, we report a case of penicilliosis in an African man from Namibia who was studying in Malaysia. He presented with multiple umbilicated papules associated with cough, fever, loss of appetite, and weight. He also had urethral discharge and admitted to unprotected sexual intercourse with multiple partners. Histopathological examination of a skin papule showed the presence of multiple 2 to 4 microm intracellular yeast cells. Culture of the papule revealed Penicillium marneffei. The serology for human immunodeficiency virus (HIV) was positive. This case illustrates the need to recognize penicilliosis in any individuals staying or travelling to Southeast Asia and the need to look for underlying HIV infection in adults with umbilicated papules.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  12. Yap FB
    Trans R Soc Trop Med Hyg, 2010 Feb;104(2):168-9.
    PMID: 19766279 DOI: 10.1016/j.trstmh.2009.05.016
    A retrospective study was conducted to determine the clinical characteristics and treatment outcomes of 11 new patients with a histological diagnosis of chromoblastomycosis at Sarawak General Hospital, Malaysia, between 1996 and 2008. The majority (81.8%) were males, and the median age at presentation was 40 years. Over half the patients were farmers. All the patients had irregular verrucous lesions, mostly on the lower limbs (90.9%), and had initially been misdiagnosed. The mean duration of the lesions was 13.8 years. Oral terbinafine and itraconazole were administered to all the patients; clinical cure was seen in 54.5%, and partial response in 18.2%. Concomitant electrocautery and cryotherapy were only effective for small lesions.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  13. Yap FB
    Int J Infect Dis, 2010 Jun;14(6):e543-4.
    PMID: 19889559 DOI: 10.1016/j.ijid.2009.07.005
    Matched MeSH terms: Antifungal Agents/administration & dosage
  14. Yahaya N, Sanagi MM, Abd Aziz N, Wan Ibrahim WA, Nur H, Loh SH, et al.
    Biomed Chromatogr, 2017 Feb;31(2).
    PMID: 27474795 DOI: 10.1002/bmc.3803
    A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.
    Matched MeSH terms: Antifungal Agents/blood*; Antifungal Agents/urine*
  15. Wong TY, Loo YS, Veettil SK, Wong PS, Divya G, Ching SM, et al.
    Sci Rep, 2020 09 03;10(1):14575.
    PMID: 32884060 DOI: 10.1038/s41598-020-71571-0
    Invasive fungal infections are a potentially life-threatening complication in immunocompromised patients. The aim of this study was to assess the efficacy and safety of posaconazole as compared with other antifungal agents for preventing invasive fungal infections in immunocompromised patients. Embase, CENTRAL, and MEDLINE were searched for randomized conweekmonthtrolled trials (RCTs) up to June 2020. A systematic review with meta-analysis of RCTs was performed using random-effects model. Trial sequential analysis (TSA) was conducted for the primary outcome to assess random errors. A total of five RCTs with 1,617 participants were included. Posaconazole prophylaxis was associated with a significantly lower risk of IFIs (RR, 0.43 [95% CI 0.28 to 0.66, p = 0.0001]) as compared to other antifungal agents. No heterogeneity was identified between studies (I2 = 0%). No significant associations were observed for the secondary outcomes measured, including risk reduction of invasive aspergillosis and candidiasis, clinical failure, all-cause mortality, and treatment-related adverse events, except for infection-related mortality (RR, 0.31 [95% CI 0.15 to 0.64, p = 0.0001]). Subgroup analysis favoured posaconazole over fluconazole for the prevention of IFIs (RR, 0.44 [95% CI 0.28 to 0.70, p = 0.0004]). TSA confirmed the prophylactic benefit of posaconazole against IFIs. Posaconazole is effective in preventing IFIs among immunocompromised patients, particularly those with hematologic malignancies and recipients of allogenic hematopoietic stem cell transplantation.
    Matched MeSH terms: Antifungal Agents/therapeutic use*
  16. Wong JW, Nisar UR, Yuen KH
    PMID: 14643517
    A sensitive and selective high-performance liquid chromatographic method was developed for the determination of itraconazole and its active metabolite, hydroxyitraconazole, in human plasma. Prior to analysis, both compounds together with the internal standard were extracted from alkalinized plasma samples using a 3:2 (v/v) mixture of 2,2,4-trimethylpentane and dichloromethane. The mobile phase comprised 0.02 M potassium dihydrogen phosphate-acetonitrile (1:1, v/v) adjusted to pH 3.0. Analysis was run at flow-rate of 0.9 ml/min with excitation and emission wavelengths set at 260 and 365 nm, respectively. Itraconazole was found to adsorb on glass or plastic tubes, but could be circumvented by prior treating the tubes using 10% dichlorodimethylsilane in toluene. Moreover, rinsing the injector port with acetonitrile helped to overcome any carry-over effect. This problem was not encountered with hydroxyitraconazole. The method was sensitive with limit of quantification of 3 ng/ml for itraconazole and 6 ng/ml for hydroxyitraconazole. The calibration curve was linear over a concentration range of 2.8-720 ng/ml for itraconazole and 5.6-720 ng/ml for the hydroxy metabolite. Mean recovery value of the extraction procedure for both compounds was about 85%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 15%. Hence, the method is suitable for use in pharmacokinetic and bioavailability studies of itraconazole.
    Matched MeSH terms: Antifungal Agents/blood*; Antifungal Agents/pharmacokinetics
  17. Wong CM, Lim KH, Liam CK
    Postgrad Med J, 1999 May;75(883):297-8.
    PMID: 10533638
    Cryptococcal infection uncommonly presents with pulmonary manifestations and even more rarely so as massive bilateral effusions. Pleural involvement is usually associated with underlying pulmonary parenchymal lesions and is unusual while on antifungal therapy. We report a patient with cryptococcal meningitis who, while on intravenous 5-flucytosine and amphotericin B, developed life-threatening bilateral massive pleural effusions with evidence of spontaneous resolution, consistent with prior hypothesis of antigenic stimulation as the cause of pleural involvement.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  18. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Antifungal Agents/pharmacology
  19. Wang H, Xu YC, Hsueh PR
    Future Microbiol, 2016 10;11:1461-1477.
    PMID: 27750452
    In the Asia-Pacific region, Candida albicans is the predominant Candida species causing invasive candidiasis/candidemia in Australia, Japan, Korea, Hong Kong, Malaysia, Singapore and Thailand whereas C. tropicalis is the most frequently encountered Candida species in Pakistan and India. Invasive isolates of C. albicans, C. parapsilosis complex and C. tropicalis remain highly susceptible to fluconazole (>90% susceptible). Fluconazole resistance (6.8-15%), isolates with the non-wild-type phenotype for itraconazole susceptibility (3.9-10%) and voriconazole (5-17.8%), and echinocandin resistance (2.1-2.2% in anidulafungin and 2.2% in micafungin) among invasive C. glabrata complex isolates are increasing in prevalence. Moreover, not all isolates of C. tropicalis have been shown to be susceptible to fluconazole (nonsusceptible rate, 5.7-11.6% in China) or voriconazole (nonsusceptible rate, 5.7-9.6% in China).
    Matched MeSH terms: Antifungal Agents/therapeutic use
  20. Walvekar S, Anwar A, Anwar A, Sridewi N, Khalid M, Yow YY, et al.
    Acta Trop, 2020 Nov;211:105618.
    PMID: 32628912 DOI: 10.1016/j.actatropica.2020.105618
    Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.
    Matched MeSH terms: Antifungal Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links