Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Mohamad S, Ibrahim P, Sadikun A
    Tuberculosis (Edinb), 2004;84(1-2):56-62.
    PMID: 14670346
    In this study, the susceptibility of Mycobacterium tuberculosis to isoniazid (INH) was compared with its derivative, 1-isonicotinyl-2-nonanoyl hydrazine (INH-C9), prepared synthetically. The minimum inhibitory concentration (MIC) of the drugs was determined using the 1% proportion method. INH-C9 was found to lower the MIC of INH from 0.05 to 0.025 microg/ml. Further studies on the effects of INH and INH-C9 on M. tuberculosis were assessed by exposing the cells to the above at the MIC level. M. tuberculosis cells grown on Middlebrook 7H10 agar were harvested at different stages of their growth cycle (initial stage, 24 and 72 h), exposed to the MICs of INH and INH-C9, and stained with acid-fast staining. The observations were made for a week. The cellular morphologies and staining characteristics were examined using a Brightfield microscope. The result indicated cells only at the initial stage of growth were most susceptible to the drugs resulting in the loss of acid-fastness and intact cellular morphology in the majority of cells.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  2. Noorizhab MNF, Zainal Abidin N, Teh LK, Tang TH, Onyejepu N, Kunle-Ope C, et al.
    Tuberculosis (Edinb), 2023 May;140:102343.
    PMID: 37080082 DOI: 10.1016/j.tube.2023.102343
    Multidrug-resistant (MDR) or extensively drug-resistant (XDR) Tuberculosis (TB) is a major challenge to global TB control. Therefore, accurate tracing of in-country MDR-TB transmission are crucial for the development of optimal TB management strategies. This study aimed to investigate the diversity of MTBC in Nigeria. The lineage and drug-resistance patterns of the clinical MTBC isolates of TB patients in Southwestern region of Nigeria were determined using the WGS approach. The phenotypic DST of the isolates was determined for nine anti-TB drugs. The sequencing achieved average genome coverage of 65.99X. The most represented lineages were L4 (n = 52, 83%), L1 (n = 8, 12%), L2 (n = 2, 3%) and L5 (n = 1, 2%), suggesting a diversified MTB population. In term of detection of M/XDR-TB, while mutations in katG and rpoB genes are the strong predictors for the presence of M/XDR-TB, the current study also found the lack of good genetic markers for drug resistance amongst the MTBC in Nigeria which may pose greater problems on local tuberculosis management efforts. This high-resolution molecular epidemiological data provides valuable insights into the mechanistic for M/XDR TB in Lagos, Nigeria.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  3. Javaid A, Hasan R, Zafar A, Chaudry MA, Qayyum S, Qadeer E, et al.
    Int J Tuberc Lung Dis, 2017 03 01;21(3):303-308.
    PMID: 28225340 DOI: 10.5588/ijtld.16.0444
    BACKGROUND: Drug resistance in general, and multidrug-resistant tuberculosis (MDR-TB) in particular, threatens global tuberculosis (TB) control efforts. Population-based estimates of drug resistance are needed to develop strategies for controlling drug-resistant TB in Pakistan.

    OBJECTIVE: To obtain population-based data on Mycobacterium tuberculosis drug resistance in Pakistan.

    METHODS: To obtain drug resistance data, we conducted a population-based study of TB cases in all provinces of Pakistan. We performed culture and drug susceptibility testing on M. tuberculosis isolates from patients with a prior history of anti-tuberculosis treatment (retreatment cases) from all over the country.

    RESULTS: Of 544 isolates from previously treated cases, 289 (53.1%) were susceptible to all first-line drugs, 255 (46.9%) were resistant to at least one anti-tuberculosis drug and 132 (24.3%) were MDR-TB. Among MDR-TB isolates, 47.0% were ofloxacin (OFX) resistant. Extensively drug-resistant TB was found in two (0.4%) isolates.

    CONCLUSION: Prevalence of drug resistance in retreatment isolates was high. The alarmingly high prevalence of OFX resistance among MDR-TB isolates may threaten the success of efforts to control and treat MDR-TB.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
  4. Lim VK
    Med J Malaysia, 1993 Jun;48(2):97-8.
    PMID: 8350810
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  5. Saeidi A, Tien Tien VL, Al-Batran R, Al-Darraji HA, Tan HY, Yong YK, et al.
    PLoS One, 2015;10(4):e0124659.
    PMID: 25894562 DOI: 10.1371/journal.pone.0124659
    Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8(+) T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161(++)CD8(+) T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  6. Sattar A, Zakaria Z, Abu J, Aziz SA, Gabriel RP
    PLoS One, 2018;13(8):e0202034.
    PMID: 30096205 DOI: 10.1371/journal.pone.0202034
    Culture is considered the gold standard for definitive diagnosis of mycobacterial infections. However, consensus about the most suitable culture procedure for isolation of nontuberculous mycobacteria is lacking. The study compared the recoveries of mycobacteria after decontamination of spiked and fresh avian feces with 4% sodium hydroxide (NaOH), 12% sulfuric acid (H2SO4), or 1% cetylperidinium chloride (CPC), with and without mixture of three antibiotics, namely vancomycin (VAN, 100 μg/ml), nalidixic acid (NAL, 100 μg/ml), and amphotericin B (AMB, 100 μg/ml). The antibiotic mixture was referred to as VNA. Decontamination procedures were evaluated using two (n = 2) avian fecal samples spiked with 106, 104, and 102 CFU/ml of Mycobacterium avium subsp. avium (ATCC 15769) and fresh avian feces (n = 42). M. avium subsp. avium was detected on the culture media from spiked samples (106 and 104 CFU/ml) decontaminated with NaOH, NaOH-VNA, H2SO4, and H2SO4 -VNA for 2-6 weeks. These bacteria were detected in 2-4 weeks when using CPC and CPC-VNA. M. avium subsp. avium cannot be isolated on culture media from spiked samples (102 CFU/ml) decontaminated with any decontaminating agent. Two mycobacterial isolates, namely, Mycobacterium terrae and M. engbaekii, were isolated from field samples decontaminated with NaOH and CPC-VNA. With regard to the contamination rate, the use of CPC-VNA showed lower contamination rates (5.5% and 19.0%) from spiked and field samples than those of the other methods (NaOH: 22.2% and 59.5%, NaOH-VNA: 16.7% and 21.4%, H2SO4: 11.1% and 40.5%, H2SO4-VNA: 5.5% and 21.4%, and CPC: 66.7% and 50%). In conclusion, the decontamination of fecal samples following a two-step procedure with 1% CPC and VNA can ensure high recovery rate of many mycobacteria with the lowest contamination in cultures.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  7. AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F
    Pharmacol Res, 2018 02;128:288-305.
    PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011
    Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  8. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z
    Molecules, 2019 Jul 04;24(13).
    PMID: 31277371 DOI: 10.3390/molecules24132449
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review's main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  9. Ouyang Y, Yang H, Zhang P, Wang Y, Kaur S, Zhu X, et al.
    Molecules, 2017 Sep 22;22(10).
    PMID: 28937657 DOI: 10.3390/molecules22101592
    Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 μg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  10. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  11. Bukhari SN, Franzblau SG, Jantan I, Jasamai M
    Med Chem, 2013 Nov;9(7):897-903.
    PMID: 23305394
    Tuberculosis, caused by Mycobacterium tuberculosis, is amongst the foremost infectious diseases. Treatment of tuberculosis is a complex process due to various factors including a patient's inability to persevere with a combined treatment regimen, the difficulty in eradicating the infection in immune-suppressed patients, and multidrug resistance (MDR). Extensive research circumscribing molecules to counteract this disease has led to the identification of many inhibitory small molecules. Among these are chalcone derivatives along with curcumin analogs. In this review article, we summarize the reported literature regarding anti tubercular activity of chalcone derivatives and synthetic curcumin analogs. Our goal is to provide an analysis of research to date in order to facilitate the synthesis of superior antitubercular chalcone derivatives and curcumin analogs.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  12. Ang CF, Ong CS, Rukmana A, Pham Thi KL, Yap SF, Ngeow YF, et al.
    J Med Microbiol, 2008 Aug;57(Pt 8):1039-1040.
    PMID: 18628510 DOI: 10.1099/jmm.0.47850-0
    Matched MeSH terms: Antitubercular Agents/pharmacology
  13. Abuzeid N, Kalsum S, Koshy RJ, Larsson M, Glader M, Andersson H, et al.
    J Ethnopharmacol, 2014 Nov 18;157:134-9.
    PMID: 25261689 DOI: 10.1016/j.jep.2014.09.020
    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  14. Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, Zahariluddin AS, et al.
    J Ethnopharmacol, 2011 Feb 16;133(3):1021-6.
    PMID: 21094237 DOI: 10.1016/j.jep.2010.11.037
    Many local plants are used in Malaysian traditional medicine to treat respiratory diseases including symptoms of tuberculosis. The aim of the study was to screen 78 plant extracts from 70 Malaysian plant species used in traditional medicine to treat respiratory diseases including symptoms of tuberculosis for activity against Mycobacterium tuberculosis H37Rv using a colorimetric microplate-based assay.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  15. Noh MAA, Fazalul Rahiman SS, A Wahab H, Mohd Gazzali A
    J Basic Clin Physiol Pharmacol, 2021 Jun 25;32(4):715-722.
    PMID: 34214294 DOI: 10.1515/jbcpp-2020-0435
    OBJECTIVES: Tuberculosis (TB) remains a public health concern due to the emergence and evolution of multidrug-resistant strains. To overcome this issue, reinforcing the effectiveness of first line antituberculosis agents using targeted drug delivery approach is an option. Glyceraldehyde-3-Phosphate Dehydrogenase (GADPH), a common virulence factor found in the pathogenic microorganisms has recently been discovered on the cell-surface of Mycobacterium tuberculosis, allowing it to be used as a drug target for TB. This study aims to discover active small molecule(s) that target GAPDH and eventually enhance the delivery of antituberculosis drugs.

    METHODS: Ten ligands with reported in vitro and/or in vivo activities against GAPDH were evaluated for their binding interactions through molecular docking studies using AutoDock 4.2 program. The ligand with the best binding energy was then modified to produce 10 derivatives, which were redocked against GAPDH using previous protocols. BIOVIA Discovery Studio Visualizer 2019 was used to explore the ligand-receptor interactions between the derivatives and GAPDH.

    RESULTS: Among the 10 ligands, curcumin, koningic acid and folic acid showed the best binding energies. Further analysis on the docking of two folic acid derivatives, F7 (γ-{[tert-butyl-N-(6-aminohexyl)]carbamate}folic acid) and F8 (folic acid N-hydroxysuccinimide ester) showed that the addition of a bulky substituent at the carboxyl group of the glutamic acid subcomponent resulted in improved binding energy.

    CONCLUSIONS: Folic acid and the two derivatives F7 and F8 have huge potentials to be developed as targeting agents against the GAPDH receptor. Further study is currently on-going to evaluate the effectiveness of these molecules in vitro.

    Matched MeSH terms: Antitubercular Agents/pharmacology
  16. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  17. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  18. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
  19. Noorizhab Fakhruzzaman MN, Abidin NZ, Aziz ZA, Lim WF, Richard JJ, Noorliza MN, et al.
    Int J Mycobacteriol, 2019 12 4;8(4):320-328.
    PMID: 31793500 DOI: 10.4103/ijmy.ijmy_144_19
    Background: Tuberculosis (TB) is still a major health problem in Malaysia with thousands of cases reported yearly. This is further burdened with the emergence of multidrug-resistant TB (MDR-TB). Whole-genome sequencing (WGS) provides high-resolution molecular epidemiological data for the accurate determination of Mycobacterium tuberculosis complex (MTBC) lineages and prediction of the drug-resistance patterns. This study aimed to investigate the diversity of MTBC in Malaysia in terms of lineage and drug-resistance patterns of the clinical MTBC isolates using WGS approach.

    Methods: The genomes of 24 MTBC isolated from sputum and pus samples were sequenced. The phenotypic drug susceptibility testing (DST) of the isolates was determined for ten anti-TB drugs. Bioinformatic analysis comprising genome assembly and annotation and single-nucleotide polymorphism (SNP) analysis in genes associated with resistance to the ten anti-TB drugs were done on each sequenced genome.

    Results: The draft assemblies covered an average of 97% of the expected genome size. Eleven isolates were aligned to the Indo-Oceanic lineage, eight were East-Asian lineage, three were East African-Indian lineage, and one was of Euro-American and Bovis lineages, respectively. Twelve of the 24 MTBC isolates were phenotypically MDR M. tuberculosis: one is polyresistance and another one is monoresistance. Twenty-six SNPs across nine genes associated with resistance toward ten anti-TB drugs were detected where some of the mutations were found in isolates that were previously reported as pan-susceptible using DST. A haplotype consisting of 65 variants was also found among the MTBC isolates with drug-resistance traits.

    Conclusions: This study is the first effort done in Malaysia to utilize 24 genomes of the local clinical MTBC isolates. The high-resolution molecular epidemiological data obtained provide valuable insights into the mechanistic and epidemiological qualities of TB within the vicinity of Southeast Asia.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links