Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Bentonite
  2. Soda W, Noble AD, Suzuki S, Simmons R, Sindhusen LA, Bhuthorndharaj S
    J Environ Qual, 2006 Oct 27;35(6):2293-301.
    PMID: 17071900
    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.
    Matched MeSH terms: Bentonite/toxicity*; Bentonite/chemistry
  3. Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Wan Md Zin Wan Yunus
    MyJurnal
    Effects of organoclay concentration on the properties of radiation crosslinked natural rubber (NR)/ ethylene vinyl acetate (EVA)/clay nanocomposites were investigated. The NR/EVA blend with a ratio of 40/60 was melt blended with different concentration of either dodecyl ammonium montmorillonite (DDA-MMT) or dimethyl dihydrogenated tallow quarternary ammonium montmorillonite (C20A). Composite of NR/EVA blend with unmodified clay (Na-MMT) was also prepared for comparison purposes. The composites were irradiated with electron beam (EB) at an optimum irradiation dose. The formation of radiation-induced crosslinking depends on the type and concentration of the organoclay used in the preparation of nanocomposites as measured by gel content. Changes in the interlayer distance of the silicate layers with the increase of organoclay concentration were shown by the XRD results. Variation in the tensile properties of the nanocomposites with the increase of organoclay concentration depends on the formation of crosslinking as well as reinforcement effect of the organoclay. Improvement in thermal stability of the NR/EVA blend was also observed with the presence of organoclay.
    Matched MeSH terms: Bentonite
  4. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):1118-21.
    PMID: 20042286 DOI: 10.1016/j.jhazmat.2009.11.134
    Decolorization of reactive azo dye, reactive black 5 (RB5), was conducted using Fe(III) immobilized on Montmorillonite K10 (MK10) as a catalyst in the presence of H(2)O(2) using Fenton-like oxidation process. The effect of different parameters such as iron ions loading on supported catalyst, catalyst dosage, initial pH of dye solution, initial concentration of H(2)O(2) and dye and reaction temperature on the decolorization efficiency of the process were studied. The results indicated that by using 12 mM of H(2)O(2) and 3.50 g L(-1) of the 0.11 wt.% Fe(III) oxide on MK10 catalyst at pH of 2.5, 99% of decolorization efficiency was achieved within 150 min in a batch process.
    Matched MeSH terms: Bentonite/chemistry*
  5. Shameli K, Ahmad MB, Yunus WM, Ibrahim NA, Gharayebi Y, Sedaghat S
    Int J Nanomedicine, 2010 Dec 01;5:1067-77.
    PMID: 21170354 DOI: 10.2147/IJN.S15033
    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO(3) solution, and after the absorption of silver ions, Ag(+) was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [d(s)] = 1.24-1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57-30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation.
    Matched MeSH terms: Bentonite/radiation effects; Bentonite/chemistry*
  6. Wibowo TY, Ridzuan Zakaria, Ahmad Zuhairi Abdullah
    Organomontmorillonites were synthesized by grafting cationic surfactants i.e quaternary ammonium compounds into the interlayer space and were characterized using XRD, FTIR and N2 adsorption/ desorption analysis. The organomontmorillonites were applied as catalyst for the esterification of glycerol (GL) with lauric acid (LA). The catalyst which had symmetrical onium salts (tetrabuthylammoniumbromide, TBAB) gave higher activity than that of unsymmetrical onium salts (cetyltrimethylammoniumbromide, CTAB). Over the TBAB-montmorillonite catalyst, glycerol monolaurate was obtained with a selectivity of about 80%, a lauric acid conversion of about 71% and a glycerol monolaurate yield of about 57%.
    Matched MeSH terms: Bentonite
  7. Palanisamy UD, Sivanathan M, Radhakrishnan AK, Haleagrahara N, Subramaniam T, Chiew GS
    Molecules, 2011 Jul 05;16(7):5709-19.
    PMID: 21730920 DOI: 10.3390/molecules16075709
    Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.
    Matched MeSH terms: Bentonite/chemistry
  8. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K
    Int J Mol Sci, 2011;12(9):6040-50.
    PMID: 22016643 DOI: 10.3390/ijms12096040
    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
    Matched MeSH terms: Bentonite/chemistry*
  9. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Bentonite/pharmacology*; Bentonite/chemistry*
  10. Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA
    Int J Nanomedicine, 2011;6:581-90.
    PMID: 21674015 DOI: 10.2147/IJN.S17112
    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications.
    Matched MeSH terms: Bentonite/chemistry*
  11. Adzmi F, Meon S, Musa MH, Yusuf NA
    J Microencapsul, 2012;29(3):205-10.
    PMID: 22309479 DOI: 10.3109/02652048.2012.659286
    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p 
    Matched MeSH terms: Bentonite/chemistry*
  12. Tan WS, Ting AS
    Bioresour Technol, 2014 May;160:115-8.
    PMID: 24405651 DOI: 10.1016/j.biortech.2013.12.056
    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system.
    Matched MeSH terms: Bentonite/chemistry*
  13. Salehabadi A, Bakar MA, Bakar NHHA
    Materials (Basel), 2014 Jun 13;7(6):4508-4523.
    PMID: 28788689 DOI: 10.3390/ma7064508
    Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT) and immiscible biopolymer blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50) were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM) and Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm) and enthalpy of melting (ΔHm) of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG) analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.
    Matched MeSH terms: Bentonite
  14. Mohammed IA, Abd Khadir NK, Jaffar Al-Mulla EA
    J Oleo Sci, 2014;63(2):193-200.
    PMID: 24420063
    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
    Matched MeSH terms: Bentonite/chemistry
  15. Irani M, Ismail H, Ahmad Z, Fan M
    J Environ Sci (China), 2015 Jan 1;27:9-20.
    PMID: 25597658 DOI: 10.1016/j.jes.2014.05.049
    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.
    Matched MeSH terms: Bentonite/chemistry*
  16. Kianfar AH, Kamil Mahmood WA, Dinari M, Farrokhpour H, Enteshari M, Azarian MH
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1582-92.
    PMID: 25459719 DOI: 10.1016/j.saa.2014.10.051
    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.
    Matched MeSH terms: Bentonite
  17. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z
    Int J Biol Macromol, 2015 Nov;81:91-9.
    PMID: 26234577 DOI: 10.1016/j.ijbiomac.2015.07.062
    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.
    Matched MeSH terms: Bentonite/chemistry*
  18. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Bentonite/chemistry*
  19. Abdul Wahab Mohammad, Mohd Tusirin Mohd Nor, Siti Rozaimah Sheikh Abdullah, Hassimi Abu Hasan, Muhammad Said
    Sains Malaysiana, 2015;44:421-427.
    Palm oil mill effluent (POME) treatment has developed in the last decade. Due to the characteristic and volume of POME,
    it needed a complete treatment to reduce the pollutant content. Three pre-treatments method, ultrafiltration, adsorption
    and decantation were applied prior to nanofiltration (NF) membrane. The polyethersulphone membrane, montmorillonite
    as the adsorbent and modern decanter was investigated in this research. Two types of NF membrane, named NF-1 and
    NF-ASP30 were used after pre-treatment. The removal of four important parameters were determined i.e. COD, TSS, colour
    and turbidity. The results showed that the adsorption and UF is better than decantation pre-treatment. The ultrafiltration
    and adsorption can reduce POME content more than 80% for all parameter while decantation varied between 40 and 80%.
    The combination of ultrafiltration and adsorption with both of NF membrane can removed almost all the parameter. But
    the decantation can only remove the turbidity but not for the rest of the parameters. Besides the POME content, the flux
    decline for both of NF membrane was also investigated. The flux of NF-1 membrane was higher than NF-ASP30 membrane
    but NF-ASP was more relative stable for the flux decline. Overall, NF-1 has better performance in flux decline.
    Matched MeSH terms: Bentonite
  20. Dzuhri S, Yuhana N, Khairulazfar M
    Sains Malaysiana, 2015;44:441-448.
    This study utilized the incorporation of nanoparticle filler into an epoxy system to study the effect of different nanosized
    montmorillonite (MMT) fillers on the thermal stability and mechanical properties of epoxy. The sample was prepared
    using diglycidyl ether of bisphenol A (DGEBA) with different surface treatments of montmorillonite filler by mechanical
    stirring. The results of thermal stability and mechanical properties of epoxy/clay system obtained from thermal gravimetric
    analyzer (TGA), universal testing machine (UTM) and scanning electron microscopy (SEM) were discussed. With the same
    amount of filler introduced into the system, different thermal stability of epoxy composite can be observed. Bentonite,
    which contained other contaminant components, can downgrade the enhanced properties of the filler.
    Matched MeSH terms: Bentonite
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links