Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Haridan US, Mokhtar U, Machado LR, Abdul Aziz AT, Shueb RH, Zaid M, et al.
    PLoS One, 2015;10(1):e0116791.
    PMID: 25594501 DOI: 10.1371/journal.pone.0116791
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method's performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.
    Matched MeSH terms: Biological Assay/methods*
  2. Shukor Y, Shamsuddin B, Mohamad O, Ithnin K
    Pak J Biol Sci, 2008 Feb 15;11(4):672-5.
    PMID: 18817148
    In this research, we modify a previously developed assay for the quantification molybdenum blue to determine whether inhibitors to molybdate reduction in bacteria inhibits cellular reduction or inhibit the chemical formation of one of the intermediate of molybdenum blue; phosphomolybdate. We manage to prove that inhibition of molybdate reduction by phosphate and arsenate is at the level of phosphomolybdate and not cellular. We also prove that mercury is a physiological inhibitor to molybdate reduction. We suggest the use of this method to assess the effect of inhibitors and activators to molybdate reduction in bacteria.
    Matched MeSH terms: Biological Assay/methods*
  3. Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, et al.
    PLoS One, 2014;9(6):e100547.
    PMID: 24945301 DOI: 10.1371/journal.pone.0100547
    High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments.
    Matched MeSH terms: Biological Assay/methods*
  4. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
    Matched MeSH terms: Biological Assay/methods*
  5. Pruksaphon K, Tan KY, Tan CH, Simsiriwong P, Gutiérrez JM, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2020 Aug;14(8):e0008581.
    PMID: 32857757 DOI: 10.1371/journal.pntd.0008581
    The aim of this study was to develop an in vitro assay for use in place of in vivo assays of snake venom lethality and antivenom neutralizing potency. A novel in vitro assay has been developed based on the binding of post-synaptically acting α-neurotoxins to nicotinic acetylcholine receptor (nAChR), and the ability of antivenoms to prevent this binding. The assay gave high correlation in previous studies with the in vivo murine lethality tests (Median Lethal Dose, LD50), and the neutralization of lethality assays (Median Effective Dose, ED50) by antisera against Naja kaouthia, Naja naja and Bungarus candidus venoms. Here we show that, for the neurotoxic venoms of 20 elapid snake species from eight genera and four continents, the in vitro median inhibitory concentrations (IC50s) for α-neurotoxin binding to purified nAChR correlated well with the in vivo LD50s of the venoms (R2 = 0.8526, p < 0.001). Furthermore, using this assay, the in vitro ED50s of a horse pan-specific antiserum against these venoms correlated significantly with the corresponding in vivo murine ED50s, with R2 = 0.6896 (p < 0.01). In the case of four elapid venoms devoid or having a very low concentration of α-neurotoxins, no inhibition of nAChR binding was observed. Within the philosophy of 3Rs (Replacement, Reduction and Refinement) in animal testing, the in vitro α-neurotoxin-nAChR binding assay can effectively substitute the mouse lethality test for toxicity and antivenom potency evaluation for neurotoxic venoms in which α-neurotoxins predominate. This will greatly reduce the number of mice used in toxicological research and antivenom production laboratories. The simpler, faster, cheaper and less variable in vitro assay should also expedite the development of pan-specific antivenoms against various medically important snakes in many parts of the world.
    Matched MeSH terms: Biological Assay/methods*
  6. Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Mar;144(3):283-91.
    PMID: 18556817
    A heavy-metal assay has been developed using bromelain, a protease. The enzyme is assayed using casein as a substrate with Coomassie dye to track completion of hydrolysis of casein. In the absence of inhibitors, casein is hydrolysed to completion, and the solution is brown. In the presence of metal ions such as Hg2+ and Cu2+, the hydrolysis of casein is inhibited, and the solution remains blue. Exclusion of sulfhydryl protective agent and ethylenediaminetetraacetic in the original assay improved sensitivity to heavy metals several fold. The assay is sensitive to Hg2+ and Cu2+, exhibiting a dose-response curve with an IC50 of 0.15 mg 1(-1) for Hg2+ and a one-phase binding curve with an IC50 of 0.23 mg 1(-1) for Cu2+. The IC50 value for Hg2+ is found to be lower to several other assays such as immobilized urease and papain assay, whilst the IC50 value for Cu2+ is lower than immobilized urease, 15-min Microtox, and rainbow trout.
    Matched MeSH terms: Biological Assay/methods*
  7. Usup G, Leaw CP, Cheah MY, Ahmad A, Ng BK
    Toxicon, 2004 Jul;44(1):37-43.
    PMID: 15225560
    This study was carried out to characterize the detection and quantitation of several paralytic shellfish poisoning (PSP) toxin congeners using a receptor binding assay (RBA). This involved competitive binding of the toxin congeners against tritium-labeled STX for receptor sites on rat brain sodium channels. Competitive binding curves were described by a four-parameter logistic equation. Half-saturation values (EC(50)) ranged from 4.38 nM for STX to 142 nM for GTX5. Receptor binding affinity was in the order STX>GTX1/4>neoSTX>GTX2/3>dcSTX>GTX5, and this was similar to the order of mouse toxicity of these congeners. Predicted toxin concentrations from observed STXeq values and EC(50) ratios relative to STX were within 20% or better of the actual concentrations used in the assay. In contrast predicted toxin concentrations using mouse toxicity ratios relative to STX did not provide a good match to actual concentrations, except for GTX1/4. This study has shown that the rat brain sodium channel RBA will provide a reliable integration of total toxicity of various PSP toxin congeners present in a sample.
    Matched MeSH terms: Biological Assay/methods*
  8. Mohd Faizal MN, Ismail N, M S Eldeen I, Mariam T
    Pak J Biol Sci, 2021 Jan;24(5):579-587.
    PMID: 34486333 DOI: 10.3923/pjbs.2021.579.587
    <b>Background and Objective:</b> Horseshoe crabs are widely used in both traditional and modern pharmaceutical applications. Most of the previous studies on horseshoe crabs focused on their blood which contains hemolymph and amoebocyte lysate. This study aimed to determine the potential antibacterial and antifouling properties of different extracts from the carapace and the book gills of <i>Carcinoscorpius rotundicauda</i>. <b>Materials and Methods:</b> The crude extracts were subjected to the bioactivity tests using the disc-diffusion and the inhibition of biofilm-formation measurement assays, for both the antibacterial and antifouling activities respectively. <b>Results:</b> The results obtained indicated that the carapace extracts had stronger antibacterial and antifouling effects compared to the book gills extracts. Extracts obtained from the male displayed more activity compared to the extracts from the female with a few exceptions. Methanol and acetone carapace crude extracts showed the best overall performance. A sterol compound was isolated from the carapace acetone extracts of the male of <i>C. rotundicauda</i>. However, the compound did not display strong activity compared to the crude extract. The compound might be contributing to the observed activity with other components through a synergistic effect. <b>Conclusion:</b> The presence of antibacterial and antifouling activities in the carapace and book gills extracts could be added to the complexity of the defence mechanisms of horseshoe crabs. The results of this study, therefore, may contribute to the knowledge of the defence mechanisms of <i>C. rotundicauda</i>. Further research is needed to determine the bioactivities of other parts of the animal and to explore their potential applications.
    Matched MeSH terms: Biological Assay/methods
  9. Citartan M, Gopinath SC, Tominaga J, Tan SC, Tang TH
    Biosens Bioelectron, 2012 Apr 15;34(1):1-11.
    PMID: 22326894 DOI: 10.1016/j.bios.2012.01.002
    Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.
    Matched MeSH terms: Biological Assay/methods*
  10. Chan HH, Mustafa FF, Zairi J
    Trop Biomed, 2011 Aug;28(2):464-70.
    PMID: 22041770
    Routine surveillance on resistant status of field mosquito populations is important to implement suitable strategies in order to prevent pest outbreaks. WHO test kit bioassay is the most frequent bioassay used to investigate the susceptibility status of field-collected mosquitoes, as it is relatively convenient to be carried out in the field. In contrast, the topical application of active ingredient is less popular in investigating the susceptibility status of mosquitoes. In this study, we accessed the susceptibility status of Aedes albopictus Skuse collected from two dengue hotspots on Penang Island: Sungai Dua and Persiaran Mayang Pasir. Two active ingredients: permethrin and deltamethrin, were used. WHO test kit bioassay showed that both wild strains collected were susceptible to the two active ingredients; while topical application assay showed that they were resistant. This indicated that WHO test kit bioassay less sensitive to low level of resistance compared to topical application assay. Hence, topical application is expected to be more indicative when used in a resistance surveillance programme.
    Matched MeSH terms: Biological Assay/methods*
  11. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Pharm Biomed Anal, 2024 Feb 15;239:115912.
    PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912
    Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
    Matched MeSH terms: Biological Assay/methods
  12. Khoo LT, Abdullah JO, Abas F, Tohit ER, Hamid M
    Molecules, 2015 Feb 24;20(3):3697-715.
    PMID: 25719740 DOI: 10.3390/molecules20033697
    The aims of this study were to examine the bioactive component(s) responsible for the anticoagulant activity of M. malabathricum Linn. leaf hot water crude extract via bioassay-guided fractionation and to evaluate the effect of bioactive component(s) on the intrinsic blood coagulation pathway. The active anticoagulant fraction of F3 was subjected to a series of chromatographic separation and spectroscopic analyses. Furthermore, the effect of the bioactive component(s) on the intrinsic blood coagulation pathway was studied through immediate and time incubation mixing studies. Through Activated Partial Thromboplastin Time (APTT) assay-guided fractionation, Subfraction B was considered the most potent anticoagulant fraction. Characterisation of Subfraction B indicated that anticoagulant activity could partly be due to the presence of cinnamic acid and a cinnamic acid derivative. APTT assays for both the immediate and time incubation mixing were corrected back into normal clotting time range (35.4-56.3 s). In conclusion, cinnamic acid and cinnamic acid derivative from Subfraction B were the first such compounds to be discovered from M. malabathricum Linn. leaf hot water crude extract that possess anticoagulant activity. This active anticoagulant Subfraction B prolonged blood clotting time by causing factor(s) deficiency in the intrinsic blood coagulation pathway.
    Matched MeSH terms: Biological Assay/methods*
  13. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Biological Assay/methods
  14. Kaur H, Ahmad M, Scaria V
    Interdiscip Sci, 2016 Mar;8(1):95-101.
    PMID: 26298582 DOI: 10.1007/s12539-015-0273-x
    There is emergence of multidrug-resistant Salmonella enterica serotype typhi in pandemic proportions throughout the world, and therefore, there is a necessity to speed up the discovery of novel molecules having different modes of action and also less influenced by the resistance formation that would be used as drug for the treatment of salmonellosis particularly typhoid fever. The PhoP regulon is well studied and has now been shown to be a critical regulator of number of gene expressions which are required for intracellular survival of S. enterica and pathophysiology of disease like typhoid. The evident roles of two-component PhoP-/PhoQ-regulated products in salmonella virulence have motivated attempts to target them therapeutically. Although the discovery process of biologically active compounds for the treatment of typhoid relies on hit-finding procedure, using high-throughput screening technology alone is very expensive, as well as time consuming when performed on large scales. With the recent advancement in combinatorial chemistry and contemporary technique for compounds synthesis, there are more and more compounds available which give ample growth of diverse compound library, but the time and endeavor required to screen these unfocused massive and diverse library have been slightly reduced in the past years. Hence, there is demand to improve the high-quality hits and success rate for high-throughput screening that required focused and biased compound library toward the particular target. Therefore, we still need an advantageous and expedient method to prioritize the molecules that will be utilized for biological screens, which saves time and is also inexpensive. In this concept, in silico methods like machine learning are widely applicable technique used to build computational model for high-throughput virtual screens to prioritize molecules for advance study. Furthermore, in computational analysis, we extended our study to identify the common enriched structural entities among the biologically active compound toward finding out the privileged scaffold.
    Matched MeSH terms: Biological Assay/methods*
  15. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: Biological Assay/methods*
  16. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Biological Assay/methods*
  17. Lee HL, Abimbola O, Singh KI
    PMID: 1488701
    Rapid enzyme microassays for the detection of resistance due to organophosphate and carbamate in individual field-collected strains of Culex quinquefasciatus adults were conducted. These tests allowed accurate differentiation by eye, on the basis of color changes of susceptible and resistant individuals. Two separate tests were conducted for the biochemical assays. In the insensitive acetylcholinesterase (AChE) test, acetylthiocholine iodide (ACTH) and 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) were used as substrate and coupling agent respectively. The resulting yellow chromophore indicated AChE activity. Test results showed that the color intensity decreased as increasing concentrations of propoxur were added, thereby confirming the susceptibility of the enzyme to inhibitor. Assay of non-specific esterase however, indicated elevated levels which were correlated with degree of malathion resistance. Electrophoretic data revealed the presence of 2 esterase bands in all strains. It was concluded that such a pattern was not contributory to malathion resistance in adults.
    Matched MeSH terms: Biological Assay/methods
  18. Lajis AFB, Ariff AB
    J Cosmet Dermatol, 2019 Jun;18(3):703-727.
    PMID: 30866156 DOI: 10.1111/jocd.12900
    Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
    Matched MeSH terms: Biological Assay/methods*
  19. Ramachandran S, Patel TR, Colbo MH
    Ecotoxicol Environ Saf, 1997 Mar;36(2):183-8.
    PMID: 9126437
    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.
    Matched MeSH terms: Biological Assay/methods*
  20. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
    Matched MeSH terms: Biological Assay/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links