Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Ng CWK, Hanizasurana H, Nor Azita AT, Nor Fariza N, Zabri K
    Medicine & Health, 2016;11(2):313-318.
    MyJurnal
    Cytomegalovirus (CMV) retinitis occurs predominantly in Human Immunodeficiency Virus (HIV) -infected patients. It was also reported in HIV-seronegative patients with systemic autoimmune disorder requiring systemic immunosuppression, organ or bone marrow transplantation, haematological or breast malignancy receiving chemotherapy, ocular diseases following intraocular or periocular corticosteroid injection, diabetes mellitus and Good syndrome. However, CMV retinitis in patients with concurrent dermatomyositis and malignancy has not been previously reported. It has not been reported in cancer other than haematological or breast malignancy, or in cancer patient prior to chemotherapy. We report a case of 40-year-old HIV-seronegative woman with underlying dermatomyositis and lung malignancy who developed right CMV retinitis which relapsed after recommencement of immunosuppressant. Both episodes of CMV retinitis were successfully treated after taken her immunocompromised state into consideration.
    Matched MeSH terms: Bone Marrow Transplantation
  2. Tan AM, Ha C, Li CF, Chan GC, Lee V, Tan PL, et al.
    Ann Acad Med Singap, 2016 Mar;45(3):106-9.
    PMID: 27146463
    Matched MeSH terms: Bone Marrow Transplantation/statistics & numerical data
  3. Goh JC, Shao XX, Hutmacher D, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:17-8.
    PMID: 15468797
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  4. Rengasamy M, Singh G, Fakharuzi NA, Siddikuzzaman, Balasubramanian S, Swamynathan P, et al.
    Stem Cell Res Ther, 2017 06 13;8(1):143.
    PMID: 28610623 DOI: 10.1186/s13287-017-0595-1
    BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats.

    METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed.

    RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers.

    CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.

    Matched MeSH terms: Bone Marrow Transplantation*
  5. Goh JC, Ouyang HW, Toh SL, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:47-8.
    PMID: 15468812
    Matched MeSH terms: Bone Marrow Transplantation*
  6. Hattori R, Matsubara H
    Mol Cell Biochem, 2004 Sep;264(1-2):151-5.
    PMID: 15544044
    Conventional therapies for severe ischemic heart disease are limited in applicability. While several angiogenesis researches have shown novel efficacy, safety and feasibility for clinical use, recently we have started the clinical trial of a sole cell therapy using autologous bone marrow mononuclear cells transplantation targeted into ischemic hibernating myocardium. Here, we review the background of bone marrow cell research and introduce therapeutic angiogenesis for severe ischemic heart disease by autologous bone marrow cells transplantation.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  7. Ng MH, Aminuddin BS, Tan KK, Tan GH, Sabarul Afian M, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:41-2.
    PMID: 15468809
    Bone marrow stem cells (BMSC), known for its multipotency to differentiate into various mesenchymal cells such as chodrocyte, osteoblasts, adipocytes, etc, have been actively applied in tissue engineering. BMSC have been successfully isolated from bone marrow aspirate and bone marrow scraping from patients of various ages (13-56 years) with as little as 2ml to 5ml aspirate. BMSC isolated from our laboratory showed the presence of a heterogenous population that showed varying prevalence of surface antigens and the presence of telomerase activity albeit weak. Upon osteogenic induction, alkaline phosphatase activity and mineralization activity were observed.
    Matched MeSH terms: Bone Marrow Transplantation*
  8. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Bone Marrow Transplantation/methods
  9. Ariffin H, Chew KS, Jawin V, Thavagnanam S
    Singapore Med J, 2020 May;61(5):284-285.
    PMID: 30128577 DOI: 10.11622/smedj.2018101
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  10. Ariffin H, Ariffin WA, Chan LL, Lam SK, Lin HP
    Med J Malaysia, 1997 Jun;52(2):174-7.
    PMID: 10968078
    Second malignant neoplasms (SMN) are an increasingly recognized late complication seen in childhood cancer survivors. A total of 3 cases of SMN have been found in the Department of Paediatrics, University Hospital Kuala Lumpur after a 15-year experience of treating childhood malignancies. Two cases are described here. The first developed abdominal non-Hodgkin's lymphoma 3 years after undergoing an allogeneic bone marrow transplant for second relapse of acute lymphoblastic leukaemia, while the second child developed myeloid leukaemia two years after completing treatment for acute lymphoblastic leukaemia. Progress in the management of childhood cancer in Malaysia and the availability of bone marrow transplantation facilities have increased the number of childhood cancer survivors; leading to increased incidence of SMN.
    Matched MeSH terms: Bone Marrow Transplantation
  11. Yusoff FM, Kajikawa M, Matsui S, Hashimoto H, Kishimoto S, Maruhashi T, et al.
    Sci Rep, 2019 05 22;9(1):7711.
    PMID: 31118440 DOI: 10.1038/s41598-019-44176-5
    Critical limb ischemia (CLI) is associated with a high risk of limb amputation. It has been shown that cell therapy is safe and has beneficial effects on ischemic clinical symptoms in patients with CLI. The aim of this study was to further investigate the outcomes of intramuscular injection of autologous bone-marrow mononuclear cells (BM-MNCs) in a long-term follow-up period in atherosclerotic peripheral arterial disease (PAD) patients who have no optional therapy. This study was a retrospective and observational study that was carried out to evaluate long-term clinical outcomes in 42 lower limbs of 30 patients with atherosclerotic PAD who underwent BM-MNC implantation. The median follow-up period was 9.25 (range, 6-16) years. The overall amputation-free rates were 73.0% at 5 years after BM-MNC implantation and 70.4% at 10 years in patients with atherosclerotic PAD. The overall amputation-free rates at 5 years and at 10 years after implantation of BM-MNCs were significantly higher in atherosclerotic PAD patients than in internal controls and historical controls. There were no significant differences in amputation rates between the internal control group and historical control group. The rate of overall survival was not significantly different between the BM-MNC implantation group and the historical control group. Implantation of autologous BM-MNCs is feasible for a long-term follow-up period in patients with CLI who have no optional therapy.
    Matched MeSH terms: Bone Marrow Transplantation*
  12. Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, et al.
    Sci Rep, 2020 11 16;10(1):19891.
    PMID: 33199760 DOI: 10.1038/s41598-020-76886-6
    Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8-15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  13. Daud, S.S., Ibrahim, K., Ariffin, H.
    JUMMEC, 2007;10(1):11-16.
    MyJurnal
    We aimed to establish a method for quantitative analysis of mixed haematopoietic chimerism based on microchip electrophoresis of selected molecular markers following PCR amplification for accurate monitoring of graft status post-transplantation. A 12-year-old girl with relapsed acute lymphoblastic leukaemia who underwent allogeneic bone marrow transplantation had qualitative chimerism analysis using short tandem repeat markers at three time points following the procedure. Her archived DNA samples were then used to test the ability to correlate her clinical course with changes in the quantity of donor chimerism at the different time points. Quantitative chimerism analysis was performed on the Agilent 2100 bioanalyser and donor-recipient ratios were calculated from generated electropherograms. Complete donor chimerism (98%) was demonstrated three weeks post- transplantation. Decreasing amount of donor chimerism to 24% was shown after three months and this concurred with clinical relapse. Following a second transplant, full donor chimerism was reestablished where donor chimerism rose to 100%. High resolution microchip electrophoresis could be useful in predicting the occurrence of increasing recipient chimerism which may herald impending relapse in patients while the disease burden is still low. This investigational approach may provide useful information for clinicians to select appropriate intervention strategies to ensure successful transplantation.
    Matched MeSH terms: Bone Marrow Transplantation
  14. Fadilah SA, Cheong SK, Raymond AA, Norlela S
    Hematology, 2001;6(5):337-9.
    PMID: 27405528 DOI: 10.1080/10245332.2001.11746588
    Nocardia infection is rare in bone marrow transplant (BMT) recipients with less than 30 cases reported in the literature [1-4]. The majority of the cases occurred late in the post-transplant period. Common clinical presentations included formation of widespread and multiple abscesses. Bone marrow hypoplasia is an uncommon finding. We describe the first case of nocardiosis, diagnosed at day 100 after non-myeloablative allogeneic peripheral blood stem cell transplantation, presenting as pancytopenia and hypocellular marrow. Eradication of the infection with antibiotics resulted in complete hematological recovery.
    Matched MeSH terms: Bone Marrow Transplantation
  15. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al.
    Arterioscler Thromb Vasc Biol, 2017 12;37(12):2322-2332.
    PMID: 28970293 DOI: 10.1161/ATVBAHA.117.310042
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.

    APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.

    CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.

    Matched MeSH terms: Bone Marrow Transplantation
  16. Yeoh AE, Ariffin H, Chai EL, Kwok CS, Chan YH, Ponnudurai K, et al.
    J Clin Oncol, 2012 Jul 1;30(19):2384-92.
    PMID: 22614971 DOI: 10.1200/JCO.2011.40.5936
    PURPOSE: To improve treatment outcome for childhood acute lymphoblastic leukemia (ALL), we designed the Malaysia-Singapore ALL 2003 study with treatment stratification based on presenting clinical and genetic features and minimal residual disease (MRD) levels measured by polymerase chain reaction targeting a single antigen-receptor gene rearrangement.
    PATIENTS AND METHODS: Five hundred fifty-six patients received risk-adapted therapy with a modified Berlin-Frankfurt-Münster-ALL treatment. High-risk ALL was defined by MRD ≥ 1 × 10(-3) at week 12 and/or poor prednisolone response, BCR-ABL1, MLL gene rearrangements, hypodiploid less than 45 chromosomes, or induction failure; standard-risk ALL was defined by MRD ≤ 1 × 10(-4) at weeks 5 and 12 and no extramedullary involvement or high-risk features. Intermediate-risk ALL included all remaining patients.
    RESULTS: Patients who lacked high-risk presenting features (85.7%) received remission induction therapy with dexamethasone, vincristine, and asparaginase, without anthracyclines. Six-year event-free survival (EFS) was 80.6% ± 3.5%; overall survival was 88.4% ± 3.1%. Standard-risk patients (n = 172; 31%) received significantly deintensified subsequent therapy without compromising EFS (93.2% ± 4.1%). High-risk patients (n = 101; 18%) had the worst EFS (51.8% ± 10%); EFS was 83.6% ± 4.9% in intermediate-risk patients (n = 283; 51%).
    CONCLUSION: Our results demonstrate significant progress over previous trials in the region. Three-drug remission-induction therapy combined with MRD-based risk stratification to identify poor responders is an effective strategy for childhood ALL.
    Matched MeSH terms: Bone Marrow Transplantation
  17. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK
    World J Surg, 2013 Apr;37(4):915-22.
    PMID: 23307180 DOI: 10.1007/s00268-012-1892-6
    BACKGROUND: Critical limb ischemia (CLI) caused by peripheral arterial disease is associated with significant morbidity and mortality. This condition is associated with a 30 % amputation rate as well as mortality levels which might be as high as 25 %. There is no pharmacological therapy available, but several reports have suggested that mesenchymal stem cells (MSCs) may be a useful therapeutic option.
    METHODS: This study, done at a university hospital, evaluated 13 patients for a phase I trial to investigate the safety and efficacy of intra-arterial MSCs in CLI patients. Eight patients with ten affected limbs were recruited for the study. As two patients (three limbs) died of ischemic cardiac events during the 6-month follow-up period, seven limbs were finally evaluated for the study.
    RESULTS: There was significant pain relief. Visual analog scale (VAS) scores decreased from 2.29 ± 0.29 to 0.5 ± 0.34 (p < 0.05), ankle brachial pressure index (ABPI) increased significantly from 0.56 ± 0.02 to 0.67 ± 0.021 (p < 0.01), and transcutaneous oxygen pressure (TcPO2) also increased significantly in the foot from 13.57 ± 3.63 to 38 ± 3.47. Similar improvement was seen in the leg as well as the thigh. There was 86 % limb salvage and six of seven ulcers showed complete or partial healing.
    CONCLUSION: It was concluded that intra-arterial MSCs could be safely administered to patients with CLI and was associated with significant therapeutic benefits.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  18. Ude CC, Ng MH, Chen CH, Htwe O, Amaramalar NS, Hassan S, et al.
    Osteoarthritis Cartilage, 2015 Aug;23(8):1294-306.
    PMID: 25887366 DOI: 10.1016/j.joca.2015.04.003
    OBJECTIVES: Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages.
    METHODS: Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed.
    RESULTS: Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa.
    CONCLUSION: The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage.
    KEYWORDS: Cartilage; Cell therapy; Function; Osteoarthritis; Regeneration
    Matched MeSH terms: Bone Marrow Transplantation*
  19. Sanaei MR, Abu J, Nazari M, Faiz NM, Bakar MZ, Allaudin ZN
    J. Avian Med. Surg., 2011 Dec;25(4):247-53.
    PMID: 22458179
    Autologous bone marrow, alone or as a composite marrow graft, has received much attention in various species. To assess the potential osteogenicity of autologous, extramedullary bone marrow implants in an avian model, 24 adult pigeons (Columba livia) were given intramuscular implantations of autologous marrow aspirated from the medial tibiotarsus. Birds were euthanatized at 1, 4, 6, 8, 10, and 12 weeks after surgery to evaluate whether ectopic bone had formed at the implant sites. Primary evaluations by in situ radiography and postmortem histologic examinations showed no evidence of bone formation. Further evaluation with histologic scores and histomorphometry revealed a significantly increased rate of angiogenesis at the implant sites by the sixth and tenth week postimplantation (P < .05). No significant differences between the treatment and control sites were present at any other endpoints. Results of this study show that, although autologous bone marrow lacks heterotopic osteogenic potentials in this avian model, it could still function as a useful adjunct to routine bone grafting techniques because of its unique capabilities to promote early angiogenesis.
    Matched MeSH terms: Bone Marrow Transplantation/veterinary*
  20. Begley CG
    Med J Malaysia, 1993 Mar;48(1):3-8.
    PMID: 7688062
    The Colony Stimulating Factors (CSFs) are a family of haemopoietic hormones that likely share a common ancestral origin and stimulate white blood cell development. They display unique but overlapping biological functions and stimulate the survival, proliferation, differentiation and functional activation of granulocytes and monocytes/macrophages and their precursor cells in vitro and in vivo. Each hormone has been purified and produced in active recombinant form. Recombinant G-CSF and GM-CSF are now being used around the world in a variety of clinical situations (e.g., in conjunction with chemotherapy and bone marrow transplantation) to promote the formation and function of these leukocytes. These molecules are among the first of a new generation of biological agents that will impact enormously on clinical medicine.
    Matched MeSH terms: Bone Marrow Transplantation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links