Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Mansur F, Luoga W, Buttle DJ, Duce IR, Lowe A, Behnke JM
    Vet Parasitol, 2014 Mar 17;201(1-2):48-58.
    PMID: 24462509 DOI: 10.1016/j.vetpar.2013.12.018
    Little is known about the efficacy of cysteine proteinases (CP) as anthelmintics for cestode infections. We examined the effects of CPs on two rodent cestodes, Hymenolepis diminuta and H. microstoma in vitro. Our data showed that naturally occurring mixtures of CPs, such as those found in papaya latex, and relatively pure preparations of fruit bromelain, papain and stem bromelain, were active in vitro against both juvenile, artificially excysted scoleces, as well as against adult worms of both rodent cestodes. Significant dose-dependent reduction in motility, ultimately leading to death of the worms, was observed with both species, and against both freshly excysted scoleces and 14-day old pre-adult worms. The most effective was fruit bromelain (after 30 min of incubation of juvenile H. diminuta and H. microstoma IC50=63 and 74 μM, respectively, and for pre-adult worms=199 and 260 μM, respectively). The least effective was stem bromelain (after 30 min of incubation of juvenile H. diminuta and H. microstoma IC50=2855 and 2772 μM, respectively, and for pre-adult worms=1374 and 1332 μM, respectively) and the efficacies of papaya latex supernatant and papain were between these extremes. In all cases these values are higher than those reported previously for efficacy of CPs against intestinal nematodes, and in contrast to nematodes, all CPs were effective against cestodes in the absence of exogenous cysteine in incubation media. The CPs appeared to attack the tegument resulting in generalised erosion mainly on the strobila. The scolex was more resistant to CP attack but nevertheless some damage to the tegument on the scolex was detected.
    Matched MeSH terms: Bromelains/pharmacology
  2. AIDA NADIA A.RAMLEE, WAN ZALIHA WAN SEMBOK
    MyJurnal
    Fresh-cut pineapple has experienced an increase in demand due to its great health benefits and is rich in vitamins A, B and C. Moreover, pineapple is known as a source of the enzyme bromelain, which has therapeutic applications, such as reducing inflammation, improving digestion and treating osteoarthritis. However, bromelain generally affects the pineapple’s flavour and is less preferred by consumers due to the uncomfortable prickling and tingling sensations it brings. In the present study, two types of gases and their combination, nitrogen (N2) and carbon dioxide (CO2), were used to evaluate their impacts on reducing the tingling and prickling sensations, as well as maintaining the postharvest qualities of fresh-cut pineapple stored at 5°C for 12 days. The parameters being evaluated were the bromelain enzyme activity, flesh colour, ascorbic acid concentration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA) and sensory evaluation. No significant differences were recorded for all parameters tested. Based on the sensory evaluations, all the attributes, such as colour, aroma, texture, sweetness, sourness, tingling and prickling sensations, and overall acceptance were not affected by the different gases application. Even though no apparent effect was observed, the 30 panellists preferred the aforementioned attributes, except sourness. In conclusion, the fumigation treatments with N2 and CO2 gases were not effective in reducing the tingling and prickling sensations of pineapples cv. Morris.
    Matched MeSH terms: Bromelains
  3. Auwal SM, Zarei M, Tan CP, Basri M, Saari N
    Sci Rep, 2018 Jul 10;8(1):10411.
    PMID: 29991723 DOI: 10.1038/s41598-018-28659-5
    Bromelain-generated biopeptides from stone fish protein exhibit strong inhibitory effect against ACE and can potentially serve as designer food (DF) with blood pressure lowering effect. Contextually, the DF refer to the biopeptides specifically produced to act as ACE-inhibitors other than their primary role in nutrition and can be used in the management of hypertension. However, the biopeptides are unstable under gastrointestinal tract (GIT) digestion and need to be stabilized for effective oral administration. In the present study, the stone fish biopeptides (SBs) were stabilized by their encapsulation in sodium tripolyphosphate (TPP) cross-linked chitosan nanoparticles produced by ionotropic gelation method. The nanoparticles formulation was then optimized via Box-Behnken experimental design to achieve smaller particle size (162.70 nm) and high encapsulation efficiency (75.36%) under the optimum condition of SBs:Chitosan mass ratio (0.35), homogenization speed (8000 rpm) and homogenization time (30 min). The SBs-loaded nanoparticles were characterized for morphology by transmission electron microscopy (TEM), physicochemical stability and efficacy. The nanoparticles were then lyophilized and analyzed using Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). The results obtained indicated a sustained in vitro release and enhanced physicochemical stability of the SBs-loaded nanoparticles with smaller particle size and high encapsulation efficiency following long period of storage. Moreover, the efficacy study revealed improved inhibitory effect of the encapsulated SBs against ACE following simulated GIT digestion.
    Matched MeSH terms: Bromelains
  4. Auwal SM, Zarei M, Tan CP, Basri M, Saari N
    Nanomaterials (Basel), 2017 Dec 02;7(12).
    PMID: 29207480 DOI: 10.3390/nano7120421
    Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP)-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora) protein using bromelain and stabilized by their encapsulation in chitosan (chit) nanoparticles (NPs). The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs). The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi) value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p < 0.05) compared with the un-encapsulated biopeptides. Moreover, the results of a morphological examination using transmission electron microscopy (TEM) demonstrated the nanoparticles as homogenous and spherical. Thus, the ACE-inhibitory biopeptides stabilized by chitosan nanoparticles can effectively reduce blood pressure for an extended period of time in hypertensive individuals.
    Matched MeSH terms: Bromelains
  5. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
    Matched MeSH terms: Bromelains/pharmacology; Bromelains/chemistry*
  6. Chia SR, Tang MSY, Chow YH, Ooi CW, Rambabu K, Zhu L, et al.
    Mol Biotechnol, 2019 Oct;61(10):715-724.
    PMID: 31350687 DOI: 10.1007/s12033-019-00200-7
    Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation from their sources due to the special system structure. Mechanisms of transferring biomolecules and factors that influence the extraction of biomolecules are reviewed in this paper. The enhancement of biomolecule extraction could be achieved depending on the properties of reverse micelles. This paper provides an overall review on lysozyme, BSA, and bromelain extraction by reverse micelle for various applications.
    Matched MeSH terms: Bromelains/isolation & purification*
  7. Muhammad Auwal S, Zarei M, Abdul-Hamid A, Saari N
    Mar Drugs, 2017 Mar 31;15(4).
    PMID: 28362352 DOI: 10.3390/md15040104
    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.
    Matched MeSH terms: Bromelains/chemistry*
  8. Ramli AN, Aznan TN, Illias RM
    J Sci Food Agric, 2017 Mar;97(5):1386-1395.
    PMID: 27790704 DOI: 10.1002/jsfa.8122
    Bromelain is a mixture of proteolytic enzymes found in pineapple (Ananas comosus) plants. It can be found in several parts of the pineapple plant, including the stem, fruit, leaves and peel. High demand for bromelain has resulted in gradual increases in bromelain production. These increases have led to the need for a bromelain production strategy that yields more purified bromelain at a lower cost and with fewer production steps. Previously, bromelain was purified by conventional centrifugation, ultrafiltration and lyophilisation. Recently, the development of more modern purification techniques such as gel filtration, ion exchange chromatography, affinity chromatography, aqueous two-phase extraction and reverse micelle chromatography has resulted in increased industrial bromelain production worldwide. In addition, recombinant DNA technology has emerged as an alternative strategy for producing large amounts of ultrapure bromelain. An up-to-date compilation of data regarding the commercialisation of bromelain in the clinical, pharmaceutical and industrial fields is provided in this review. © 2016 Society of Chemical Industry.
    Matched MeSH terms: Bromelains/isolation & purification*; Bromelains/chemistry
  9. Pang WC, Ramli ANM, Hamid AAA
    J Mol Model, 2020 May 16;26(6):142.
    PMID: 32417971 DOI: 10.1007/s00894-020-04398-1
    Fruit bromelain is a cysteine protease accumulated in pineapple fruits. This proteolytic enzyme has received high demand for industrial and therapeutic applications. In this study, fruit bromelain sequences QIM61759, QIM61760 and QIM61761 were retrieved from the National Center for Biotechnology Information (NCBI) Genbank Database. The tertiary structure of fruit bromelain QIM61759, QIM61760 and QIM61761 was generated by using MODELLER. The result revealed that the local stereochemical quality of the generated models was improved by using multiple templates during modelling process. Moreover, by comparing with the available papain model, structural analysis provides an insight on how pro-peptide functions as a scaffold in fruit bromelain folding and contributing to inactivation of mature protein. The structural analysis also disclosed the similarities and differences between these models. Lastly, thermal stability of fruit bromelain was studied. Molecular dynamics simulation of fruit bromelain structures at several selected temperatures demonstrated how fruit bromelain responds to elevation of temperature.
    Matched MeSH terms: Bromelains/metabolism*; Bromelains/chemistry
  10. Mohamed SIA, Jantan I, Haque MA
    Int Immunopharmacol, 2017 Sep;50:291-304.
    PMID: 28734166 DOI: 10.1016/j.intimp.2017.07.010
    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed.
    Matched MeSH terms: Bromelains
  11. Haslaniza, H., Maskat, M.Y., Wan Aida, W.M., Mamot, S.
    MyJurnal
    A study was carried out to determine the effect of enzyme concentration, temperature and incubation time of bromelain on nitrogen content (NC) and degree of hydrolysis (DH) of hydrolysate from cockle (Anadara granosa) meat wash water. Protein precipitation of cockle meat wash water was conducted at pH 4. The precipitate was then hydrolyzed using bromelain at concentrations of 0.5, 1.5 and 2.5% (enzyme/substrate). The best enzyme concentration was subsequently used to study the effect of incubation temperature at 30, 45 and 60°C. The best temperature was then used to determine the effect of incubation time at 0, 24 and 48 hours. Increasing bromelain concentration from 0 to 2.5% produced an increase in NC and DH. Similarly, increasing the incubation time from 0 to 48 hours also increased the value of NC and DH. However, while the increasing of incubation temperature from 30 to 60°C produced an increase in NC, no significant difference was observed for DH.
    Matched MeSH terms: Bromelains
  12. Nadzirah, K.Z., Zainal, S., Noriham, A., Normah, I.
    MyJurnal
    Bromelain is one of the vegetal proteases found in pineapple plant. It has numerous applications in food and pharmaceuticals. This review discussed different bromelain purification techniques which will assist in determining the effect of processing conditions on the purification efficacy. There are four purification techniques to be discussed, namely; reverse micellar system, aqueous two phase extraction, cation exchange chromatography and ammonium sulphate precipitation. Of the four techniques, cation exchange chromatography had shown the best bromelain purification technique with purification fold of 10.0 followed by reverse micellar system containing CTAB/ isooctane/ hexanol/ butanol, ATPE containing PEG polymer, ammonium sulphate precipitation and ATPE containing PEO-PPO-PEO with purification fold of 5.2, 4.0, 2.81 and 1.25, respectively.
    Matched MeSH terms: Bromelains
  13. Haslaniza, H., Maskat, M. Y, Wan Aida, W. M., Mamot, S., Saadiah, I.
    MyJurnal
    Cockle (Anadara granosa) meat wash water precipitate was hydrolyzed using bromelain. Experiments were carried out to determine optimum conditions for temperature, enzyme concentration and hydrolysis time using response surface methodology (RSM) based on a central composite rotatable design (CCRD) to obtain the highest value of nitrogen content (NC) and degree of hydrolysis (DH). Results revealed that the optimum conditions for temperature, enzyme concentration and hydrolysis time were 33.7°C, 1.45% (E/S) and 28.42 hrs, respectively. At the optimum condition, hydrolysis of cockle meat wash water precipitate using bromelain resulted in a NC of 0.6% and DH of 48%. The NC and DH were significantly influenced by temperature, enzyme concentration and hydrolysis time. When the bromelain concentration, hydrolysis time and temperature were increased, the values of NC and DH also increased. The hydrolysate produced contained flavor compounds found in clam and oyster which were 3-methylbutanol and 1-pentanol. The compound 3-MCPD was not found in the hydrolysate.
    Matched MeSH terms: Bromelains
  14. MyJurnal
    Pineapple (Ananas comosus), Bromeliaceae family, is a fruit grows in tropical countries including Malaysia. This fruit has several pharmacological benefits due to the presence of high concentration of bromelain (cysteine proteases). Condition of elevated temperature will induce deformation of enzyme and result in loss of activity. Sulfhydryl groups in cysteine proteases are readily to be oxidized and might account for the denaturation of bromelain at elevated temperature. Polyphenol from ethanolic cashew leave extract could be complexed with bromelain to stabilize the enzymatic activity. In thermal stability test, the heat damage effect on bromelain was ten times reduced after complexing with cashew extract. The enzymatic activity of free bromelain decreased gradually from 25 o C to 95 o C. Complexed bromelain was stable in activity to heating up to 85 o C. Bromelainpolyphenol complex showed a good heat resistance. The result revealed that polyphenol could protect bromelain in pineapple juice from heat denaturation.
    Matched MeSH terms: Bromelains
  15. Nurul, A.I., Azura, A.
    MyJurnal
    Knowledge about the thermal and storage behavior of produced protein is important for the purpose of storage, transport and shelve life during industrial application. Recombinant bromelain thermal and storage stability were measured and compared to the commercial bromelain using Differential Scanning Calorimetry (DSC). Recombinant bromelain is more stable than commercial bromelain at higher temperature but the stability was reduced after 7 days of storage at 4oC. Higher energy is needed to break the bond between amino acid chains in recombinant bromelain as shown by the enthalpy obtained, suggesting that recombinant bromelain has good protein structure and conformation compared to commercial.
    Matched MeSH terms: Bromelains
  16. Normah, I., Nurul Fasihah, R.
    MyJurnal
    Angelwing clam (Pholas orientalis) hydrolysate was prepared by hydrolysis using bromelain. The hydrolysate named as bromelain hydrolysate (BH) was then treated with β-cyclodextrin in the ratio of 1:0.8 (v/w) by physical mixing and kneading methods producing the physical mixed hydrolysate (PMH) and kneaded method hydrolysate (KMH), respectively. The masking effect of β-cyclodextrin on bitterness was evaluated based on sensory analysis, amino acid analysis and determination of flavor compound by gas chromatography- mass spectrometry (GC-MS) and field emission scanning electron microscope (FESEM). Sensory analysis showed that KMH has least bitter taste compared to BH. Amino acids analysis showed that hydrophobic amino acids content that contributed to the bitter taste were lower in KMH and PMH compared to BH. GC-MS analysis also showed that benzothiazole compounds were present in KMH. The absence of benzene, 1-phenyl-4-2-(2-cyano-2-phenylethyl) in KMH and PMH indicated that phenylalanine in BH had been masked by β-cyclodextrin. FESEM showed that the new solid phase formed by kneading method has a crystal structure which was completely different from the original morphology of BH and β-cyclodextrin. Therefore, the bitterness in BH had successfully been masked by β-cyclodextrin, thus indicates its potential to be used as food ingredient..
    Matched MeSH terms: Bromelains
  17. Nor, M. Z. M., Ramchandran, L., Duke, M., Vasiljevic, T.
    MyJurnal
    About 60% of world’s commercial enzyme products are proteases, giving promising opportunity
    to derive such enzymes sustainably from waste sources. Bromelain is a crude protease occurring
    naturally in pineapple, and it possesses properties of benefit for pharmaceutical, medical and food products. The production of bromelain involves a purification stage, normally performed by small-scale conventional operations which lead to high operating cost and low product recovery, while being difficult to scale up and produce polluting by-products. Membrane-based technology offers an alternative to produce high quality purified bromelain in a more efficient and sustainable process. This review identified the current state and future needs for utilising membrane processes for sustainable bromelain production at larger scales. It was found that declining membrane flux due to fouling have been reported, but may be effectively overcome with more appropriate (and advanced) membrane types and/or processing conditions. For example, interactions between macromolecules present in the pineapple derived bromelain mixture (particularly polysaccharides) and the membrane may cause performance limiting fouling, but can be overcome by enzymatic pre-treatment. Membrane fouling can be further reduced by the employment of ceramic membrane filters operating at optimised trans-membrane pressure, cross-flow velocity, feed pH and temperature. Two-stage ultrafiltration together with diafiltration or gas sparging was suggested as a means to reduce fouling and improve enzyme purity. Despite these promising technical findings, the review identified the need for a valid economic assessment to properly guide further work towards purifying bromelain from pineapple waste for sustainable production of commercial proteases.
    Matched MeSH terms: Bromelains
  18. Mohamad NE, Abu N, Yeap SK, Alitheen NB
    Integr Cancer Ther, 2019 11 23;18:1534735419880258.
    PMID: 31752555 DOI: 10.1177/1534735419880258
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
    Matched MeSH terms: Bromelains/pharmacology*
  19. Ghanbari R, Ebrahimpour A
    Food Sci Biotechnol, 2018 Apr;27(2):591-598.
    PMID: 30263784 DOI: 10.1007/s10068-017-0267-z
    Actinopyga lecanora, as a rich protein source was hydrolysed to generate antibacterial bioactive peptides using different proteolytic enzymes. Bromelain hydrolysate, after 1 h hydrolysis, exhibited the highestantibacterial activities against Pseudomonas aeruginosa, Pseudomonas sp., Escherichia coli and Staphylococcus aureus. Two dimensional fractionation strategies, using a semi-preparative RP-HPLC and an isoelectric-focusing electrophoresis, were applied for peptide profiling. Furthermore, UPLC-QTOF-MS was used for peptides identification; 12 peptide sequences were successfully identified. The antibacterial activity of purified peptides from A. lecanora on P. aeruginosa, Pseudomonas sp., E. coli and S. aureus was investigated. These identified peptides exhibited growth inhibition against P. aeruginosa, Pseudomonas sp., E. coli and S. aureus with values ranging from 18.80 to 75.30%. These results revealed that the A. lecanora would be used as an economical protein source for the production of high value antibacterial bioactive peptides.
    Matched MeSH terms: Bromelains
  20. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Bromelains/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links