Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Su YC, Wan KL, Mohamed R, Nathan S
    Microbes Infect., 2008 Oct;10(12-13):1335-45.
    PMID: 18761419 DOI: 10.1016/j.micinf.2008.07.034
    Burkholderia pseudomallei is the etiological agent of melioidosis, a severe infectious disease of humans and animals. The role of the bacterium's proteins expressed in vivo during human melioidosis continues to remain an enigma. This study's aim was to identify B. pseudomallei target proteins that elicit the humoral immune response in infected humans. A small insert genomic expression library was constructed and immunoscreened to identify peptides that reacted exclusively with melioidosis patients' sera. Sero-positive clones expressing immunogenic peptides were sequenced and annotated, and shown to represent 109 proteins involved in bacterial cell envelope biogenesis, cell motility and secretion, transcription, amino acid, ion and protein metabolism, energy production, DNA repair and unknown hypothetical proteins. Western blot analysis of three randomly selected full-length immunogenic polypeptides with patients' sera verified the findings of the immunome screening. The patients' humoral immune response to the 109 proteins suggests the induction or significant upregulation of these proteins in vivo during human infection and thus may play a role in the pathogenesis of B. pseudomallei. Identification of B. pseudomallei immunogens has shed new light on the elucidation of the bacterium's pathogenesis mechanism and disease severity. These immunogens can be further evaluated as prophylactic and serodiagnostic candidates as well as drug targets.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  2. Mariappan V, Thimma J, Vellasamy KM, Shankar EM, Vadivelu J
    Environ Microbiol Rep, 2018 04;10(2):217-225.
    PMID: 29393577 DOI: 10.1111/1758-2229.12624
    Physiological constituents in airway surface liquids (ASL) appear to impact the adherence and invasion potentials of Burkholderia pseudomallei contributing to recrudescent melioidosis. Here, we investigated the factors present in ASL that is likely to influence bacterial adhesion and invasion leading to improved understanding of bacterial pathogenesis. Six B. pseudomallei clinical isolates from different origins were used to investigate the ability of the bacteria to adhere and invade A549 human lung epithelial cells using a system that mimics the physiological ASL with different pH, NaCl, KCl, CaCl2 and glucose concentrations. These parameters resulted in markedly differential adherence and invasion abilities of B. pseudomallei to the lung epithelial cells. The concentration of 20 mM glucose dramatically increased adherence and invasion by increasing the rate of pili formation in depiliated bacteria. Glucose significantly increased adherence and invasion of B. pseudomallei to A549 cells, and presence of NaCl, KCl and CaCl2 markedly ablated the effect despite the presence of glucose. Our data established a link between glucose, enhanced adhesion and invasion potentials of B. pseudomallei, hinting increased susceptibility of individuals with diabetes mellitus to clinical melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  3. Zong Z, Wang X, Deng Y
    PMID: 27244959
    A previously healthy Chinese male working in Malaysia returned to China with high fever. A blood culture showed Burkholderia pseudomallei strain WCBP1. This isolate was sequenced, showing type, ST881, which appears to be present in Malaysia. WCP1 had unusual susceptibility to aminoglycosides and habored the Yersinia-like fimbrial gene cluster for virulence. The patient's condition deteriorated rapidly but he recovered after receiving meropenem and intensive care support. Melioidosis is a potential problem among Chinese imigrant workers with strains new to China being identified.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  4. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  5. Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, et al.
    Diagn Microbiol Infect Dis, 2007 Jul;58(3):263-70.
    PMID: 17350202
    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  6. Lee SH, Wong RR, Chin CY, Lim TY, Eng SA, Kong C, et al.
    Proc Natl Acad Sci U S A, 2013 Sep 10;110(37):15067-72.
    PMID: 23980181 DOI: 10.1073/pnas.1311725110
    Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  7. Chieng S, Carreto L, Nathan S
    BMC Genomics, 2012;13:328.
    PMID: 22823543 DOI: 10.1186/1471-2164-13-328
    Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  8. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S, et al.
    J Appl Microbiol, 2015 Aug;119(2):331-41.
    PMID: 25891038 DOI: 10.1111/jam.12830
    Epidemiology of melioidosis is poorly understood because its occurrence is influenced by complex interaction of environmental, climatic, physicochemical and host factors. We investigated the potential risk factors for the exposure to Burkholderia pseudomallei in small ruminants' farms in Peninsular Malaysia.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  9. Radua S, Ling OW, Srimontree S, Lulitanond A, Hin WF, Yuherman, et al.
    Diagn Microbiol Infect Dis, 2000 Nov;38(3):141-5.
    PMID: 11109011
    A total of 35 Burkholderia pseudomallei isolates from Thailand (16 clinical and eight soil isolates) and Malaysia (seven animal, two isolate each from clinical and soil) were investigated by their antimicrobial resistance, plasmid profiles and were typed by randomly amplified polymorphic DNA analysis. All isolates were found to be resistant to six or more of the 12 antimicrobial agents tested. Only two small plasmids of 1.8 and 2.4 megadalton were detected in two clinical isolates from Thailand. RAPD analysis with primer GEN2-60-09 resulted in the identification of 35 RAPD-types among the 35 isolates. The constructed dendrogram differentiated the 35 isolates into two main clusters and a single isolate. The wide genetic biodiversity among the 35 isolates indicate that RAPD-PCR can be a useful method to differentiate unrelated B. pseudomallei in epidemiological investigation.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  10. Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Microbiol, 2015;15:270.
    PMID: 26597807 DOI: 10.1186/s12866-015-0604-4
    There are still numerous protein subfamilies within families and superfamilies that do not yet have conclusive empirical experimental evidence providing a specific function. These proteins persist in databases with the annotation of a specific 'putative' function made by association with discernible features in the protein sequence.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  11. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J
    Microb Pathog, 2009 Sep;47(3):111-7.
    PMID: 19524661 DOI: 10.1016/j.micpath.2009.06.003
    To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environmental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease, phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the culture filtrates of all the 15 isolates at different time points of growth 4-24h. Over time, activity of each enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be increased in 60-100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and mortality rate ranged from few days to several weeks.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  12. Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Genomics, 2012;13 Suppl 7:S13.
    PMID: 23282220 DOI: 10.1186/1471-2164-13-S7-S13
    The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  13. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  14. Khosravi Y, Dieye Y, Poh BH, Ng CG, Loke MF, Goh KL, et al.
    ScientificWorldJournal, 2014;2014:610421.
    PMID: 25105162 DOI: 10.1155/2014/610421
    Human stomach is the only known natural habitat of Helicobacter pylori (Hp), a major bacterial pathogen that causes different gastroduodenal diseases. Despite this, the impact of Hp on the diversity and the composition of the gastric microbiota has been poorly studied. In this study, we have analyzed the culturable gastric microbiota of 215 Malaysian patients, including 131 Hp positive and 84 Hp negative individuals that were affected by different gastric diseases. Non-Hp bacteria isolated from biopsy samples were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry based biotyping and 16SrRNA sequencing. The presence of Hp did not significantly modify the diversity of the gastric microbiota. However, correlation was observed between the isolation of Streptococci and peptic ulcer disease. In addition, as a first report, Burkholderia pseudomallei was also isolated from the gastric samples of the local population. This study suggested that there may be geographical variations in the diversity of the human gastric microbiome. Geographically linked diversity in the gastric microbiome and possible interactions between Hp and other bacterial species from stomach microbiota in pathogenesis are proposed for further investigations.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  15. Chua KH, See KH, Thong KL, Puthucheary SD
    Trop Biomed, 2010 Dec;27(3):517-24.
    PMID: 21399594 MyJurnal
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei and endemic in Southeast Asia. One hundred and forty six clinical isolates of B. pseudomallei from different states in Malaysia were obtained and molecular typing was carried out using pulsed-field gel electrophoresis (PFGE). Overall, nine clusters were successfully identified. Burkholderia pseudomallei isolates used in this study were found to be genetically diverse and there were differences in the clusters of isolates from peninsular and east Malaysia. BS9 cluster was the most common cluster and found in all the states while BS2 cluster only existed in a particular state. Based on the PFGE analysis, the distribution of different B. pseudomallei clinical isolates in Malaysia was mapped.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  16. Azura MN, Norazah A, Kamel AG, Zorin SA
    PMID: 21323173
    We have analysed DNA fingerprinting patterns by pulsed-field gel electrophoresis (PFGE) of 52 unrelated Burkholderia pseudomallei strains isolated from septicemic and localized infections from Malaysian subjects. A total of 38 PFGE types were observed among 36 septicemic and 16 localized strains with no predominant pattern. Type 25 was seen in 2 epidemiologically related strains, suggesting human to human transmission. Twelve PFGE types were shared among 26 strains (21 septicemic and 5 localized) showing close genetic relatedness with coefficient of similarity of 0.81 to 1.0. The other 26 strains (15 septicemic and 11 localized) were unrelated as shown by the similarity coefficient of < 0.8. This study showed that our B. pseudomallei strains in Malaysia were mainly heterogenous with no predominant type both in septicemic or localized strains.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  17. Koh SF, Tay ST, Sermswan R, Wongratanacheewin S, Chua KH, Puthucheary SD
    J Microbiol Methods, 2012 Sep;90(3):305-8.
    PMID: 22705921 DOI: 10.1016/j.mimet.2012.06.002
    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  18. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  19. Mohd Ali MR, Lih Huey L, Foo PC, Goay YX, Ismail AS, Mustaffa KMF, et al.
    Biomed Res Int, 2019;2019:9451791.
    PMID: 31355287 DOI: 10.1155/2019/9451791
    Melioidosis and leptospirosis, caused by two different bacteria, Burkholderia pseudomallei and Leptospira spp., are potentially fatal infections that share a very similar spectrum of clinical features and cause significant mortality and morbidity in humans and livestock. Early detection is important for better clinical consequences. To our knowledge, there is no diagnostic tool available to simultaneously detect and differentiate melioidosis and leptospirosis in humans and animals. In this study, we described a duplex TaqMan probe-based qPCR for the detection of B. pseudomallei and Leptospira spp. DNA. The performance of the assay was evaluated on 20 B. pseudomallei isolates, 23 Leptospira strains, and 39 other microorganisms, as well as two sets of serially diluted reference strains. The duplex qPCR assay was able to detect 0.02 pg (~ 4 copies) Leptospira spp. DNA and 0.2 pg (~ 25.6 copies) B. pseudomallei DNA. No undesired amplification was observed in other microorganisms. In conclusion, the duplex qPCR assay was sensitive and specific for the detection of B. pseudomallei & Leptospira spp. DNA and is suitable for further analytical and clinical evaluation.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  20. Kang WT, Vellasamy KM, Chua EG, Vadivelu J
    J Infect Dis, 2015 Mar 1;211(5):827-34.
    PMID: 25165162 DOI: 10.1093/infdis/jiu492
    OBJECTIVES: The bsa locus of Burkholderia pseudomallei encodes several proteins that are components of the type III secretion system (TTSS). BipC was postulated as one of the TTSS-3 effector proteins, but its role in the pathogenesis of B. pseudomallei infection is not well understood. Thus, the aim of this study was to determine its role(s) in the virulence of B. pseudomallei pathogenesis.
    METHODS: A bipC TTSS-3-deficient strain of B. pseudomallei and complemented strains were generated to assess the role of BipC as a type III translocation apparatus. Human cell lines and a mouse model of melioidosis were used for in vitro and in vivo assays, respectively.
    RESULTS: A significant 2-fold reduction was demonstrated in the percentage of adherence, invasion, intracellular survival, and phagosomal escape of the bipC mutant. Interestingly, microscopic studies have shown that BipC was capable of delayed B. pseudomallei actin-based motility. The virulence of the mutant strain in a murine model of melioidosis demonstrated that the bipC mutant was less virulent, compared with the wild type.
    CONCLUSION: The results suggested that BipC possesses virulence determinants that play significant roles in host cell invasion and immune evasion.
    KEYWORDS: BipC; Burkholderia pseudomallei; host cell invasion; type III secretion system; type III translocation apparatus; virulence
    Matched MeSH terms: Burkholderia pseudomallei/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links