Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Ho WS, Balan G, Puthucheary S, Kong BH, Lim KT, Tan LK, et al.
    Microb Drug Resist, 2012 Aug;18(4):408-16.
    PMID: 22394084 DOI: 10.1089/mdr.2011.0222
    The emergence of Escherichia coli resistant to extended-spectrum cephalosporins (ESCs) is of concern as ESC is often used to treat infections by Gram-negative bacteria. One-hundred and ten E. coli strains isolated in 2009-2010 from children warded in a Malaysian tertiary hospital were analyzed for their antibiograms, carriage of extended-spectrum beta-lactamase (ESBL) and AmpC genes, possible inclusion of the beta-lactamase genes on an integron platform, and their genetic relatedness. All E. coli strains were sensitive to carbapenems. About 46% of strains were multidrug resistant (MDR; i.e., resistant to ≥3 antibiotic classes) and almost half (45%) were nonsusceptible to ESCs. Among the MDR strains, high resistance rates were observed for ampicillin (98%), tetracycline (75%), and trimethoprim/sulfamethoxazole (73%). Out of 110 strains, bla(TEM-1) (49.1%), bla(CTX-M) (11.8%), and bla(CMY-2) (6.4%) were detected. Twenty-one strains were ESBL producers. CTX-M-15 was the predominant CTX-M variant found and this is the first report of a CTX-M-27-producing E. coli strain from Malaysia. Majority (3.1%) of the strains harbored class 1 integron-encoded integrases with a predominance of aadA and dfr genes within the integron variable region. No gene cassette encoding ESBL genes was found and integrons were not significantly associated with ESBL or non-ESBL producers. Possible clonal expansion was observed for few CTX-M-15-positive strains but the O25-ST131 E. coli clone known to harbor CTX-M-15 was not detected while CMY-2-positive strains were genetically diverse.
    Matched MeSH terms: Carbapenems/pharmacology
  2. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Carbapenems/pharmacology
  3. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: Carbapenems/pharmacology
  4. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: Carbapenems/pharmacology
  5. Urmi UL, Nahar S, Rana M, Sultana F, Jahan N, Hossain B, et al.
    Infect Drug Resist, 2020;13:2863-2875.
    PMID: 32903880 DOI: 10.2147/IDR.S262493
    Introduction: Klebsiella pneumoniae carbapenemase (KPC) belongs to the Group-A β-lactamases that incorporate serine at their active site and hydrolyze various penicillins, cephalosporins, and carbapenems. Metallo-beta-lactamases (MBLs) are group-B enzymes that contain one or two essential zinc ions in the active sites and hydrolyze almost all clinically available β-lactam antibiotics. Klebsiella pneumoniae remains the pathogen with the most antimicrobial resistance to KPC and MBLs.

    Methods: This research investigated the blaKPC, and MBL genes, namely, blaIMP, blaVIM, and blaNDM-1 and their phenotypic resistance to K. pneumoniae isolated from urinary tract infections (UTI) in Bangladesh. Isolated UTI K. pneumoniae were identified by API-20E and 16s rDNA gene analysis. Their phenotypic antimicrobial resistance was examined by the Kirby-Bauer disc diffusion method, followed by minimal inhibitory concentration (MIC) determination. blaKPC, blaIMP, blaNDM-1, and blaVIM genes were evaluated by polymerase chain reactions (PCR) and confirmed by sequencing.

    Results: Fifty-eight K. pneumoniae were identified from 142 acute UTI cases. Their phenotypic resistance to amoxycillin-clavulanic acid, cephalexin, cefuroxime, ceftriaxone, and imipenem were 98.3%, 100%, 96.5%, 91.4%, 75.1%, respectively. Over half (31/58) of the isolates contained either blaKPC or one of the MBL genes. Individual prevalence of blaKPC, blaIMP, blaNDM-1, and blaVIM were 15.5% (9), 10.3% (6), 22.4% (13), and 19% (11), respectively. Of these, eight isolates (25.8%, 8/31) were found to have two genes in four different combinations. The co-existence of the ESBL genes generated more resistance than each one individually. Some isolates appeared phenotypically susceptible to imipenem in the presence of blaKPC, blaIMP, blaVIM, and blaNDM-1 genes, singly or in combination.

    Conclusion: The discrepancy of genotype and phenotype resistance has significant consequences for clinical bacteriology, precision in diagnosis, the prudent selection of antimicrobials, and rational prescribing. Heterogeneous phenotypes of antimicrobial susceptibility testing should be taken seriously to avoid inappropriate diagnostic and therapeutic decisions.

    Matched MeSH terms: Carbapenems
  6. Dasgupta C, Rafi MA, Salam MA
    Pak J Med Sci, 2020 9 25;36(6):1297-1302.
    PMID: 32968397 DOI: 10.12669/pjms.36.6.2943
    Objectives: Urinary tract infections due to multi drug resistant bacteria have been on the rise globally with serious implications for public health. The objective of this study was to explore the prevalence of multi drug resistant uropathogens and to correlate the urinary tract infections with some demographic and clinical characteristics of patients admitted in a tertiary care hospital in Bangladesh.

    Methods: A cross sectional prospective study was conducted at Shaheed Ziaur Rahman Medical College Hospital, Bogura, Bangladesh among clinically suspected urinary tract infection patients from January to December, 2018. Clean-catch midstream or catheter-catch urine samples were subjected to bacteriological culture using chromogenic agar media. Antimicrobial susceptibility testing of the isolates was done by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Descriptive statistical methods were used for data analysis.

    Results: Culture yielded a total of 537 (42.8%) significant bacterial growths including 420 (78.2%) multi drug resistant uropathogens from 1255 urine samples. Escherichia coli was the most common isolate (61.6%) followed by Klebsiella spp. (22.5%), Pseudomonas spp. (7.8%), Staphylococcus aureus (5.4%) and Enterobacter spp. (2.6%) with multi drug resistance frequency of 77.6%, 71.9%, 90.5%, 86.2% and 92.9% respectively. There was female preponderance (M:F; 1:1.97; P=0.007) but insignificant differences between paediatric and adult population (43.65% vs. 42.57%) and also among different age groups. Diabetes, chronic renal failure, fever and supra-pubic pain had significant association as co-morbidities and presentations of urinary tract infections (P<0.05). Multi drug resistance ranged from 3.7 to 88.1% including moderate to high resistance found against commonly used antibiotics like ciprofloxacin, cephalosporin, azithromycin, aztreonam, cotrimoxazole and nalidixic acid (28.6 to 92.9%). Isolates showed 2.4 to 32.2% resistance to nitrofurantoin, amikacin, netilmicin and carbapenems except Pseudomonas spp. (66.7% resistance to nitrofurantoin) and Enterobacter spp. (28.6 to 42.9% resistance to carbapenems).

    Conclusion: There is very high prevalence of multi drug resistant uropathogens among hospitalized patients and emergence of carbapenem resistance is an alarming situation. Antibiotic stewardship program is highly recommended for hospitals to combat antimicrobial resistance.

    Matched MeSH terms: Carbapenems
  7. Nusrat T, Akter N, Haque M, Rahman NAA, Dewanjee AK, Ahmed S, et al.
    Pathogens, 2019 Sep 12;8(3).
    PMID: 31547453 DOI: 10.3390/pathogens8030151
    BACKGROUND: Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in intensive care units (ICU), which accounts for 25% of all ICU infection. Documenting carbapenem-resistant gram-negative bacilli is very important as these strains may often cause outbreaks in the ICU setting and are responsible for the increased mortality and morbidity or limiting therapeutic options. The classical phenotypic method cannot provide an efficient means of diagnosis of the metallo-β-lactamases (MBLs) producer. Polymerase chain reaction (PCR) assays have lessened the importance of the phenotypic approach by detecting metallo-β-lactamase resistance genes such as New Delhi metallo-β-lactamase (NDM), Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany Imipenemase (GIM).

    OBJECTIVE: To compare the results of the Combined Disc Synergy Test (CDST) with that of the multiplex PCR to detect MBL-producing gram-negative bacilli.

    MATERIALS AND METHOD: A total of 105 endotracheal aspirates (ETA) samples were collected from the ICU of a public school in Bangladesh. This cross-sectional study was carried out in the Department of Microbiology, Chittagong for quantitative culture, CDST test, and multiplex PCR for blaIMP, blaVIM, blaNDM genes of MBL producers.

    RESULTS: Among the 105 clinically suspected VAP cases, the quantitative culture was positive in 95 (90%) and among 95 g-negative bacilli isolated from VAP patients, 46 (48.42%) were imipenem resistant, 30 (65.22%) were MBL producers by CDST, 21 (45.65%) were identified as MBL producers by multiplex PCR.

    CONCLUSION: PCR was highly sensitive and specific for the detection of MBL producers.

    Matched MeSH terms: Carbapenems
  8. Ngoi ST, Teh CSJ, Chong CW, Abdul Jabar K, Tan SC, Yu LH, et al.
    Antibiotics (Basel), 2021 Feb 11;10(2).
    PMID: 33670224 DOI: 10.3390/antibiotics10020181
    The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76-80%), ticarcillin-clavulanate (58-76%), and piperacillin-tazobactam (48-50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.
    Matched MeSH terms: Carbapenems
  9. Mustafa M, Chan WM, Lee C, Harijanto E, Loo CM, Van Kinh N, et al.
    Int J Antimicrob Agents, 2014 Apr;43(4):353-60.
    PMID: 24636429 DOI: 10.1016/j.ijantimicag.2014.01.017
    Doripenem is approved in the Asia-Pacific (APAC) region for treating nosocomial pneumonia (NP) including ventilator-associated pneumonia (VAP), complicated intra-abdominal infections (cIAIs) and complicated urinary tract infections (cUTIs). Clinical usage of doripenem (500mg intravenously, infused over 1h or 4h every 8h for 5-14 days) in APAC was evaluated in a prospective, open-label, non-comparative, multicentre study of inpatients (≥18 years) with NP, VAP, cIAI or cUTI. A total of 216 [intention-to-treat (ITT)] patients received doripenem: 53 NP (24.5%); 77 VAP (35.6%); 67 cIAI (31.0%); and 19 cUTI (8.8%). Doripenem MIC90 values for Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae were 32, 32, 0.094 and 0.64μg/mL, respectively. Doripenem was used most commonly as monotherapy (86.6%) and as second-line therapy (62.0%). The clinical cure rate in clinically evaluable patients was 86.7% at the end of therapy (EOT) and 87.1% at test of cure (TOC) (7-14 days after EOT). In the ITT population, overall clinical cure rates were 66.2% at EOT and 56.5% at TOC. The median duration of hospital stay, intensive care unit (ICU) stay and mechanical ventilation was 20, 12 and 10 days, respectively. Of 146 discharged patients, 7 were re-admitted within 28 days of EOT; 1 VAP patient was re-admitted to the ICU. The all-cause mortality rate was 22.7% (49/216). The most common treatment-related adverse events were diarrhoea (1.4%) and vomiting (1.4%). Doripenem is a viable option for treating APAC patients with NP, VAP, cIAI or cUTI. [ClinicalTrials.gov: NCT 00986102].
    Matched MeSH terms: Carbapenems/adverse effects; Carbapenems/blood; Carbapenems/therapeutic use*
  10. Chua WC, Mazlan MZ, Ali S, Che Omar S, Wan Hassan WMN, Seevaunnantum SP, et al.
    IDCases, 2017;9:91-94.
    PMID: 28725564 DOI: 10.1016/j.idcr.2017.05.002
    We report a fatal case of post-partum streptococcal toxic shock syndrome in a patient who was previously healthy and had presented to the emergency department with an extensive blistering ecchymotic lesions over her right buttock and thigh associated with severe pain. The pregnancy had been uncomplicated, and the mode of delivery had been spontaneous vaginal delivery with an episiotomy. She was found to have septicemic shock requiring high inotropic support. Subsequently, she was treated for necrotizing fasciitis, complicated by septicemic shock and multiple organ failures. A consensus was reached for extensive wound debridement to remove the source of infection; however, this approach was abandoned due to the patient's hemodynamic instability and the extremely high risks of surgery. Both the high vaginal swab and blister fluid culture revealed Group A beta hemolytic streptococcus infection. Intravenous carbapenem in combination with clindamycin was given. Other strategies attempted for streptococcal toxic removal included continuous veno-venous hemofiltration and administration of intravenous immunoglobulin. Unfortunately, the patient's condition worsened, and she succumbed to death on day 7 of hospitalization.
    Matched MeSH terms: Carbapenems
  11. Anna Misya’il Abdul Rashid, Lim, Christopher Thiam Seong
    MyJurnal
    Enterobacter gergoviae is a gram negative rod-shaped opportunistic organism reported to cause urinary and respiratory tract infections, but peritonitis caused by this organism is unknown. We report a case of 50-year-old patient on peritoneal dialysis (PD) presented with Enterobacter gergoviae peritonitis with septic shock. Despite Intraperitoneal (IP) cloxacillin 250mg qid and IP ceftazidime 1gram q24h and subsequent escalation with IP amikacin 2mg/kg q24h and IP vancomycin 15mg/kg q24h within the next 48 hours, his peritonitis remained refractory and required catheter removal. Although Enterobacter gergoviae is naturally sensitive to aminoglycosides, carbapenems and quinolones, it reacts differently to the beta lactam antibiotics. Their resistance to third-generation cephalosporins is fast emerging and treatment with third-generation cephalosporins may cause AmpC-overproducing mutants. The majority of
    Enterobacteriaceae, including Extended-spectrum beta-lactamases producers, remain susceptible to carbapenems. Our report provides an unfavourable course of E. gergoviae peritonitis likely due to acquired secondary drug resistance during the therapy period.
    Matched MeSH terms: Carbapenems
  12. Abubakar U, Al-Anazi M, Alanazi Z, Rodríguez-Baño J
    J Infect Public Health, 2023 Mar;16(3):320-331.
    PMID: 36657243 DOI: 10.1016/j.jiph.2022.12.022
    BACKGROUND: There is paucity of data describing the impact of COVID-19 pandemic on antimicrobial resistance. This review evaluated the changes in the rate of multidrug resistant gram negative and gram positive bacteria during the COVID-19 pandemic.

    METHODS: A search was conducted in PubMed, Science Direct, and Google Scholar databases to identify eligible studies. Studies that reported the impact of COVID-19 pandemic on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamase inhibitor (ESBL)-producing Enterobacteriaceae, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CPE) were selected. Studies published in English language from the start of COVID-19 pandemic to July 2022 were considered for inclusion.

    RESULTS: Thirty eligible studies were selected and most of them were from Italy (n = 8), Turkey (n = 3) and Brazil (n = 3). The results indicated changes in the rate of multidrug resistant bacteria, and the changes varied between the studies. Most studies (54.5%) reported increase in MRSA infection/colonization during the pandemic, and the increase ranged from 4.6 to 170.6%. Five studies (55.6%) reported a 6.8-65.1% increase in VRE infection/colonization during the pandemic. A 2.4-58.2% decrease in ESBL E. coli and a 1.8-13.3% reduction in ESBL Klebsiella pneumoniae was observed during the pandemic. For CRAB, most studies (58.3%) reported 1.5-621.6% increase in infection/colonization during the pandemic. Overall, studies showed increase in the rate of CRE infection/colonization during the pandemic. There was a reduction in carbapenem-resistant E. coli during COVID-19 pandemic, and an increase in carbapenem-resistant K. pneumoniae. Most studies (55.6%) showed 10.4 - 40.9% reduction in the rate of CRPA infection during the pandemic.

    CONCLUSION: There is an increase in the rate of multidrug resistant gram positive and gram negative bacteria during the COVID-19 pandemic. However, the rate of ESBL-producing Enterobacteriaceae and CRPA has decrease during the pandemic. Both infection prevention and control strategies and antimicrobial stewardship should be strengthen to address the increasing rate of multidrug resistant gram positive and gram negative bacteria.

    Matched MeSH terms: Carbapenems
  13. Deris ZZ
    Malays J Med Sci, 2015 Sep;22(5):1-6.
    PMID: 28239263
    The global emergence and dissemination of multidrug-resistant Gram-negative superbugs, particularly carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, lead to the limited effectiveness of antibiotics for treating nosocomial infections. In most cases, polymyxins are the last resort therapy, and these antibiotics must be used intelligently to prolong their efficacy in clinical practice. Polymyxin B and colistin (polymyxin E) were introduced prior to modern drug regulation, and the majority of the 'old' drug information is unreliable. Recent pharmacokinetic data do not support the renal dose adjustment of intravenous (IV) polymyxin B as suggested by the manufacturer, and this drug must be scaled by the total body weight. Whereas IV colistin is formulated as an inactive prodrug, colistin methanesulfonate (CMS) has different pharmacokinetic profiles than polymyxin B. To achieve maximum efficacy, CMS should be administered as a loading dose scaled to body weight and a maintenance dose according to the renal profiles. Polymyxin combination therapy is suggested due to a sub-therapeutic plasma concentration in a significant proportion of patients and a high incidence of polymyxin hetero-resistance among Gram-negative superbugs. In conclusion, polymyxins must be reserved as a last resort and should be wisely used when truly indicated.
    Matched MeSH terms: Carbapenems
  14. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA
    Emerg Health Threats J, 2015;8:26011.
    PMID: 25765342 DOI: 10.3402/ehtj.v8.26011
    Background : Antibiotic resistance among Enterobacteriaceae posts a great challenge to the health care service. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is attracting significant attention due to its rapid and global dissemination. The infection is associated with significant morbidity and mortality, thus creating challenges for infection control and managing teams to curb the infection. In Southeast Asia, there have been limited reports and subsequent research regarding CRKP infections. Thus, the study was conducted to characterize CRKP that has been isolated in our setting. Methods : A total of 321 K. pneumoniae were included in the study. Each isolate went through an identification process using an automated identification system. Phenotypic characterization was determined using disk diffusion, modified Hodge test, Epsilometer test, and inhibitor combined disk test. Further detection of carbapenemase genes was carried out using polymerase chain reaction and confirmed by gene sequence analysis. Results : All together, 13 isolates (4.05%) were CRKP and the majority of them were resistant to tested antibiotics except colistin and tigercycline. Among seven different carbapenemase genes studied (blaKPC, bla IMP, bla SME, bla NDM, bla IMI, bla VIM, and bla OXA), only two, bla IMP4 (1.87%) and bla NDM1 (2.18%), were detected in our setting. Conclusion : Evidence suggests that the prevalence of CRKP in our setting is low, and knowledge of Carbapenem-resistant Enterobacteriaceae and CRKP has improved and become available among clinicians.
    Matched MeSH terms: Carbapenems/pharmacology*
  15. Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL
    Int J Antimicrob Agents, 2019 Oct;54(4):381-399.
    PMID: 31369812 DOI: 10.1016/j.ijantimicag.2019.07.019
    Carbapenem-resistant Enterobacteriaceae infections have spread globally, leaving polymyxins, including colistin, as 'last-resort treatments'. Emerging colistin resistance raises the spectre of untreatable infections. Despite this threat, data remain limited for much of the world, including Southeast Asia where only 3 of 11 nations submitted data on carbapenem and colistin resistance for recent World Health Organization (WHO) reports. To improve our understanding of the challenge, we utilised broad strategies to search for and analyse data on carbapenem and colistin resistance among Escherichia coli and Klebsiella in Southeast Asia. We found 258 studies containing 526 unique reports and document carbapenem-resistant E. coli and Klebsiella in 8 and 9 of 11 nations, respectively. We estimated carbapenem resistance proportions through meta-analysis of extracted data for nations with ≥100 representative isolates. Estimated resistance among Klebsiella was high (>5%) in four nations (Indonesia, Philippines, Thailand and Vietnam), moderate (1-5%) in two nations (Malaysia and Singapore) and low (<1%) in two nations (Cambodia and Brunei). For E. coli, resistance was generally lower but was high in two of seven nations with ≥100 isolates (Indonesia and Myanmar). The most common carbapenemases were NDM metallo-β-lactamases and OXA β-lactamases. Despite sparse data, polymyxin resistance was documented in 8 of 11 nations, with mcr-1 being the predominant genotype. Widespread presence of carbapenem and polymyxin resistance, including their overlap in eight nations, represents a continuing risk and increases the threat of infections resistant to both classes. These findings, and remaining data gaps, highlight the urgent need for sufficiently-resourced robust antimicrobial resistance surveillance.
    Matched MeSH terms: Carbapenems/pharmacology*
  16. Gan HM, Lean SS, Suhaili Z, Thong KL, Yeo CC
    J Bacteriol, 2012 Nov;194(21):5979-80.
    PMID: 23045494 DOI: 10.1128/JB.01466-12
    Acinetobacter baumannii is a major cause of nosocomial infection worldwide. We report the draft genome sequence of A. baumannii AC12, a multidrug-resistant nosocomial strain with additional resistance to carbapenems and polymyxin. The genome data will provide insights into the genetic basis of antimicrobial resistance and its adaptive mechanism.
    Matched MeSH terms: Carbapenems/pharmacology
  17. Mohd Sazlly Lim S, Naicker S, Ayfan AK, Zowawi H, Roberts JA, Sime FB
    Int J Antimicrob Agents, 2020 Oct;56(4):106115.
    PMID: 32721600 DOI: 10.1016/j.ijantimicag.2020.106115
    Due to limited therapeutic options, combination therapy has been used empirically to treat carbapenem-resistant Acinetobacter baumannii (CRAB). Polymyxin-based combinations have been widely studied and used in the clinical setting. However, the use of polymyxins is often limited due to nephrotoxicity and neurotoxicity. This study aimed to evaluate the activity of non-polymyxin-based combinations relative to polymyxin-based combinations and to identify potential synergistic and bactericidal two-drug non-polymyxin-based combinations against CRAB. In vitro activity of 14 two-drug combinations against 50 A. baumannii isolates was evaluated using the checkerboard method. Subsequently, the two best-performing non-polymyxin-based combinations from the checkerboard assay were explored in static time-kill experiments. Concentrations of antibiotics corresponding to the fractional inhibitory concentrations (FIC) and the highest serum concentration achievable clinically were tested. The most synergistic combinations were fosfomycin/sulbactam (synergistic against 37/50 isolates; 74%), followed by meropenem/sulbactam (synergistic against 28/50 isolates; 56%). No antagonism was observed for any combination. Both fosfomycin/sulbactam and meropenem/sulbactam combinations exhibited bactericidal and synergistic activity against both isolates at the highest clinically achievable concentrations in the time-kill experiments. The meropenem/sulbactam combination displayed synergistic and bactericidal activity against one of two strains at concentrations equal to the FIC. Non-polymyxin-based combinations such as fosfomycin/sulbactam and meropenem/sulbactam may have a role in the treatment of CRAB. Further in vivo and clinical studies are required to scrutinise these activities further.
    Matched MeSH terms: Carbapenems/pharmacology
  18. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
    Matched MeSH terms: Carbapenems/pharmacology*
  19. Chung PY
    FEMS Microbiol Lett, 2016 10;363(20).
    PMID: 27664057
    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
    Matched MeSH terms: Carbapenems/therapeutic use*
  20. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
    Matched MeSH terms: Carbapenems/adverse effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links