Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Lau NS, Furusawa G
    Sci Total Environ, 2024 Feb 20;912:169134.
    PMID: 38070563 DOI: 10.1016/j.scitotenv.2023.169134
    In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 β-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.
    Matched MeSH terms: Carbohydrate Metabolism
  2. Alkhayl FFA, Ismail AD, Celis-Morales C, Wilson J, Radjenovic A, Johnston L, et al.
    Sci Rep, 2022 Feb 15;12(1):2469.
    PMID: 35169204 DOI: 10.1038/s41598-022-06446-7
    The aims of the current study, therefore, were to compare (1) free-living MPS and (2) muscle and metabolic adaptations to resistance exercise in South Asian and white European adults. Eighteen South Asian and 16 White European men were enrolled in the study. Free-living muscle protein synthesis was measured at baseline. Muscle strength, body composition, resting metabolic rate, VO2max and metabolic responses (insulin sensitivity) to a mixed meal were measured at baseline and following 12 weeks of resistance exercise training. Free-living muscle protein synthesis was not different between South Asians (1.48 ± 0.09%/day) and White Europeans (1.59 ± 0.15%/day) (p = 0.522). In response to resistance exercise training there were no differences, between South Asians and White Europeans, muscle mass, lower body strength or insulin sensitivity. However, there were differences between the ethnicities in response to resistance exercise training in body fat, resting carbohydrate and fat metabolism, blood pressure, VO2max and upper body strength with responses less favourable in South Asians. In this exploratory study there were no differences in muscle protein synthesis or anabolic and metabolic responses to resistance exercise, yet there were less favourable responses in several outcomes. These findings require further investigation.
    Matched MeSH terms: Carbohydrate Metabolism
  3. Kok AD, Wan Abdullah WMAN, Tang CN, Low LY, Yuswan MH, Ong-Abdullah J, et al.
    Sci Rep, 2021 06 24;11(1):13226.
    PMID: 34168171 DOI: 10.1038/s41598-021-92401-x
    Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.
    Matched MeSH terms: Carbohydrate Metabolism/drug effects
  4. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Carbohydrate Metabolism
  5. Zulkarnain NN, Anuar N, Johari NA, Sheikh Abdullah SR, Othman AR
    Environ Toxicol Pharmacol, 2020 Nov;80:103498.
    PMID: 32950717 DOI: 10.1016/j.etap.2020.103498
    Inefficient ketoprofen removal from pharmaceutical wastewater may negatively impact the ecosystem and cause detrimental risks to human health. This study was conducted to determine the cytotoxicity effects of ketoprofen on HEK 293 cell growth and metabolism, including cyclooxygenase-1 (COX-1) expression, at environmentally relevant concentrations. The cytotoxic effects were evaluated through the trypan blue test, DNS assay, MTT assay, and the expression ratio of the COX-1 gene. The results of this study show insignificant (p > 0.05) cytotoxic effects of ketoprofen on cell viability and cell metabolism. However, high glucose consumption rates among the treated cells cause an imitation of the Warburg effect, which is likely linked to the development of cancer cells. Apart from that, the upregulation of COX-1 expression among the treated cells indicates remote possibility of inflammation. Although no significant cytotoxic effects of ketoprofen were detected throughout this study, the effects of prolonged exposure of residual ketoprofen need to be evaluated in the future.
    Matched MeSH terms: Carbohydrate Metabolism/drug effects
  6. Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, et al.
    Mol Biol Rep, 2020 Sep;47(9):6727-6740.
    PMID: 32809102 DOI: 10.1007/s11033-020-05728-5
    Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
    Matched MeSH terms: Carbohydrate Metabolism/drug effects
  7. Tani N, Abdul Hamid ZA, Joseph N, Sulaiman O, Hashim R, Arai T, et al.
    Sci Rep, 2020 01 20;10(1):650.
    PMID: 31959766 DOI: 10.1038/s41598-019-57170-8
    Oil palm is an important crop for global vegetable oil production, and is widely grown in the humid tropical regions of Southeast Asia. Projected future climate change may well threaten palm oil production. However, oil palm plantations currently produce large amounts of unutilised biological waste. Oil palm stems - which comprise two-thirds of the waste - are especially relevant because they can contain high levels of non-structural carbohydrates (NSC) that can serve as feedstock for biorefineries. The NSC in stem are also considered a potent buffer to source-sink imbalances. In the present study, we monitored stem NSC levels and female reproductive growth. We then applied convergent cross mapping (CCM) to assess the causal relationship between the time-series. Mutual causal relationships between female reproductive growth and the stem NSC were detected, with the exception of a relationship between female reproductive organ growth and starch levels. The NSC levels were also influenced by long-term cumulative temperature, with the relationship showing a seven-month time lag. The dynamic between NSC levels and long-term cumulative rainfall showed a shorter time lag. The lower temperatures and higher cumulative rainfall observed from October to December identify this as a period with maximum stem NSC stocks.
    Matched MeSH terms: Carbohydrate Metabolism*
  8. Eugene M. Obeng, Chan, Yi Wei, Siti Nurul Nadzirah Adam, Clarence M. Ongkudon
    MyJurnal
    Cellulases have been vital for the saccharification of lignocellulosic biomass into reduced sugars to produce biofuels and other essential biochemicals. However, the sugar yields achievable for canonical cellulases (i.e. endoglucanases, exoglucanases and β-glucosidases) have not been convincing in support of the highly acclaimed prospects and end-uses heralded. The persistent pursuit of the biochemical industry to obtain high quantities of useful chemicals from lignocellulosic biomass has resulted in the supplementation of cellulose-degrading enzymes with other biological complementation. Also, chemical additives (e.g. salts, surfactants and chelating agents) have been employed to enhance the stability and improve the binding and overall functionality of cellulases to increase product titre. Herein, we report the roadmap of cellulase-additive supplementations and the associated yield performances.
    Matched MeSH terms: Carbohydrate Metabolism
  9. Ahmad SY, Friel JK, MacKay DS
    PMID: 31697573 DOI: 10.1139/apnm-2019-0359
    BACKGROUND: This study aims to determine the effect of pure forms of sucralose and aspartame, in doses reflective of common consumption, on glucose metabolism.

    METHODS: Healthy participants consumed pure forms of a non-nutritive sweetener (NNS) mixed with water that were standardized to doses of 14% (0.425 g) of the acceptable daily intake (ADI) for aspartame and 20% (0.136 g) of the ADI for sucralose every day for two weeks. Blood samples were collected and analysed for glucose, insulin, active glucagon-like peptide-1 (GLP-1), and leptin.

    RESULTS: Seventeen participants (10 females and 7 males; age 24 ± 6.8 years; BMI 22.9 ± 2.5 kg/m2) participated in the study. The total area under the curve (AUC) values of glucose, insulin, active GLP-1 and leptin were similar for the aspartame and sucralose treatment groups compared to the baseline values in healthy participants. There was no change in insulin sensitivity after NNS treatment compared to the baseline values.

    CONCLUSIONS: These findings suggest that daily repeated consumption of pure sucralose or aspartame for 2 weeks had no effect on glucose metabolism among normoglycaemic adults. However, these results need to be tested in studies with longer durations. Novelty: • Daily consumption of pure aspartame or sucralose for 2 weeks had no effect on glucose metabolism. • Daily consumption of pure aspartame or sucralose for 2 weeks had no effect on insulin sensitivity among healthy adults.

    Matched MeSH terms: Carbohydrate Metabolism
  10. Chew SY, Ho KL, Cheah YK, Sandai D, Brown AJP, Than LTL
    Int J Mol Sci, 2019 Jun 28;20(13).
    PMID: 31261727 DOI: 10.3390/ijms20133172
    Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their β-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.
    Matched MeSH terms: Carbohydrate Metabolism*
  11. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
    Matched MeSH terms: Carbohydrate Metabolism
  12. Lai YH, Puspanadan S, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2798.
    PMID: 30828976 DOI: 10.1002/btpr.2798
    Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax ) obtained was 0.059 day-1 with the doubling time (td ) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L-1 under optimized phosphorus limitation (0.025 g L-1 ) conditions. Nitrogen limitation (0.250 g L-1 ) results demonstrated significant influenced (p 
    Matched MeSH terms: Carbohydrate Metabolism*
  13. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Carbohydrate Metabolism/genetics*
  14. Zhuravlova M, Ryndina N, Kravchun P
    PMID: 30829588
    According to literature, the presence of concomitant diabetes mellitus type 2 (DM) is associated with a high frequency of complications in patients with acute myocardial infarction (MI) due to the development of repeated episodes of myocardial ischemia, left ventricular dysfunction, life threatening rhythm disorders, and thromboembolic events Aim: to analyze the state of immuno-inflammation based on the study of calprotectin, as well as to assess the presence and nature of links with carbohydrate metabolism parameters based on the study of blood glucose, insulin and insulin resistance. Patients with AMI in combination with DM 2 were found to have a significant increase in the level of calprotectin by 25.9% (p<0.001) compared to patients with AMI without DM 2. Assessment of carbohydrate metabolism rates revealed changes in the form of statistically significant increase in the concentration of fasting glucose in patients with AMI in combination with DM 2 by 41.8% (p<0.001) when compared to patients with isolated AMI. As for serum insulin, the level of this parameter when combined with the course of AMI and DM 2 significantly exceeded those in patients with AMI without DM 2. The level of HOMA index in patients with AMI with concomitant DM 2 when compared to patients with isolated AMI was also higher (differences are statistically significant, p<0.01). The study showed a correlation between serum calprotectin and insulinemia (R=0.57; p<0.05), HOMA index (R=0.52; p<0.05), fasting glycemia (R=0.59; p<0.05) and troponin I level (R=0,64; p<0,05). The obtained results indicate that the growth of immune inflammatory activity due to the proinflammatory parameter of calprotectin is accompanied by an increase in changes in carbohydrate homeostasis in the form of an increase in the degree of insulin resistance in patients with AMI and DM 2, and severity of cardiac ischemia.
    Matched MeSH terms: Carbohydrate Metabolism*
  15. Shullia NI, Raffiudin R, Juliandi B
    Trop Life Sci Res, 2019 Jan;30(1):89-107.
    PMID: 30847035 DOI: 10.21315/tlsr2019.30.1.6
    Genes related to carbohydrate metabolism have evolved rapidly in eusocial bees, including honey bees. However, the characterisation of carbohydrate metabolism genes has not been reported in Apis andreniformis or Apis cerana indica. This study aimed to characterise phosphofructokinase (PFK) and pyruvate kinase (PK) genes in these honey bee species and to analyse the evolution of the genus Apis using these genes. This study found the first data regarding A. andreniformis PFK and PK-like nucleotide sequences. A BLAST-n algorithm-based search showed that A. andreniformis and A. c. indica PFK and PK genes were homologous with those of Apis florea and Apis cerana cerana from Korea, respectively. Multiple alignments of PFKs from five Apis species showed many exon gains and losses, but only one among the PKs. Thus, the exon-intron organisation of the PK genes may be more conserved compare with that of the PFKs. Another evolutionary pattern indicated that more nucleotide substitutions occurred in Apis' PK than PFK genes. Deduced PFK amino acid sequences revealed a PFK consensus pattern of 19 amino acids, while the deduced PK amino acid sequences were predicted to have barrel and alpha/beta domains. Based on these two metabolism-related genes, The Neighbour-joining and Maximum likelihood phylogenetic trees are congruent and revealed that the A. andreniformis and A. florea group were in the basal position. Apis mellifera, A. cerana, and Apis dorsata formed a monophyletic clade, although the positions of A. mellifera and A. dorsata were different in the nucleotide- and amino acid-based phylogenetic trees.
    Matched MeSH terms: Carbohydrate Metabolism
  16. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2019 01;42(1):147-158.
    PMID: 30740741 DOI: 10.1002/jimd.12036
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors/genetics*; Carbohydrate Metabolism, Inborn Errors/metabolism*
  17. Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, et al.
    Pol J Microbiol, 2018 11 20;67(3):283-290.
    PMID: 30451444 DOI: 10.21307/pjm-2018-033
    Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.
    Matched MeSH terms: Carbohydrate Metabolism
  18. Gan HM, Austin C, Linton S
    Mar Biotechnol (NY), 2018 Oct;20(5):654-665.
    PMID: 29995174 DOI: 10.1007/s10126-018-9836-2
    The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase ("classic cellulase") transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.
    Matched MeSH terms: Carbohydrate Metabolism
  19. Osman WNW, Mohamed S
    Phytother Res, 2018 Oct;32(10):2078-2085.
    PMID: 29993148 DOI: 10.1002/ptr.6151
    The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
    Matched MeSH terms: Carbohydrate Metabolism*
  20. Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    J Pharm Biomed Anal, 2018 Sep 05;158:438-450.
    PMID: 29957507 DOI: 10.1016/j.jpba.2018.06.038
    The present study sought to identify the key biomarkers and pathways involved in the induction of allergic sensitization to ovalbumin and to elucidate the potential anti-anaphylaxis property of Clinacanthus nutans (Burm. f.) Lindau water leaf extract, a Southeast Asia herb in an in vivo ovalbumin-induced active systemic anaphylaxis model evaluated by 1H-NMR metabolomics. The results revealed that carbohydrate metabolism (glucose, myo-inositol, galactarate) and lipid metabolism (glycerol, choline, sn-glycero-3-phosphocholine) are the key requisites for the induction of anaphylaxis reaction. Sensitized rats treated with 2000 mg/kg bw C. nutans extract before ovalbumin challenge showed a positive correlation with the normal group and was negatively related to the induced group. Further 1H-NMR analysis in complement with Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals the protective effect of C. nutans extract against ovalbumin-induced anaphylaxis through the down-regulation of lipid metabolism (choline, sn-glycero-3-phosphocholine), carbohydrate and signal transduction system (glucose, myo-inositol, galactarate) and up-regulation of citrate cycle intermediates (citrate, 2-oxoglutarate, succinate), propanoate metabolism (1,2-propanediol), amino acid metabolism (betaine, N,N-dimethylglycine, methylguanidine, valine) and nucleotide metabolism (malonate, allantoin). In summary, this study reports for the first time, C. nutans water extract is a potential anti-anaphylactic agent and 1H-NMR metabolomics is a great alternative analytical tool to explicate the mechanism of action of anaphylaxis.
    Matched MeSH terms: Carbohydrate Metabolism/drug effects; Carbohydrate Metabolism/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links