Displaying publications 1 - 20 of 155 in total

Abstract:
Sort:
  1. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Carcinogenesis/metabolism
  2. Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1292:83-95.
    PMID: 31916234 DOI: 10.1007/5584_2019_464
    INTRODUCTION: Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated.

    METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.

    RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.

    CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.

    Matched MeSH terms: Carcinogenesis/genetics; Carcinogenesis/pathology
  3. Wong RSY
    Adv Pharmacol Sci, 2019;2019:3418975.
    PMID: 30838040 DOI: 10.1155/2019/3418975
    The nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed by medical practitioners in many clinical conditions for the symptomatic treatment of pain and fever. Due to their anti-inflammatory properties, these drugs have been investigated for their anticancer effects in numerous studies. This is because chronic inflammation has long been linked to carcinogenesis. As such, anti-inflammatory drugs are believed to play a role in cancer treatment and prevention. In the past few decades, research has shown that NSAIDs may decrease the risk of certain types of cancer. However, there is also a growing body of research that proves the contrary. Furthermore, NSAIDs are well known for many side effects, including some life-threatening ones. This review will discuss the relationship between chronic inflammation and cancer, the role of NSAIDs in cancer prevention and cancer promotion, and some of the potentially lethal side effects of these drugs.
    Matched MeSH terms: Carcinogenesis
  4. Selvaraj C, Safi SZ, Vijayakumar R
    Adv Protein Chem Struct Biol, 2023;137:135-159.
    PMID: 37709373 DOI: 10.1016/bs.apcsb.2023.05.001
    Circadian rhythms are autonomous oscillators developed by the molecular circadian clock, essential for coordinating internal time with the external environment in a 24-h daily cycle. In mammals, this circadian clock system plays a major role in all physiological processes and severely affects human health. The regulation of the circadian clock extends beyond the clock genes to involve several clock-controlled genes. Hence, the aberrant expression of these clock genes leads to the downregulation of important targets that control the cell cycle and the ability to undergo apoptosis. This may lead to genomic instability and promotes carcinogenesis. Alteration in the clock genes and their modulation is recognized as a new approach for the development of effective treatment against several diseases, including cancer. Until now, there has been a lack of understanding of circadian rhythms and cancer disease. For that, this chapter aims to represent the core components of circadian rhythms and their function in cancer pathogenesis and progression. In addition, the clinical impacts, current clock drugs, and potential therapeutic targets have been discussed.
    Matched MeSH terms: Carcinogenesis
  5. Kooi OK, Ling CY, Rodzi R, Othman F, Mohtarrudin N, Suhaili Z, et al.
    PMID: 25392583
    BACKGROUND: Melastoma malabathricum L. Smith (family Melastomaceae) is a shrub that has been used by the Malay practitioners of traditional medicine to treat various types of ailments. The present study aimed to determine the chemopreventive activity of methanol extract of M. malabathricum leaves (MEMM) using the standard 7,12-dimethylbenz(α)anthracene (DMBA)/croton oil-induced mouse skin carcinogenesis model.

    MATERIALS AND METHODS: In the initiation phase, the mice received a single dose of 100µl/100 µg DMBA (group I-V) or 100µl acetone (group VI) topically on the dorsal shaved skin area followed by the promotion phase involving treatment with the respective test solutions (100 µl of acetone, 10 mg/kg curcumin or MEMM (30, 100 and 300mg/kg)) for 30 min followed by the topical application of tumour promoter (100µl croton oil). Tumors were examined weekly and the experiment lasted for 15 weeks.

    RESULTS: MEMM and curcumin significantly (p<0.05) reduced the tumour burden, tumour incidence and tumour volume, which were further supported by the histopathological findings.

    CONCLUSION: MEMM demonstrated chemoprevention possibly via its antioxidant and anti-inflammatory activities, and the action of flavonoids like quercitrin.

    Matched MeSH terms: Carcinogenesis/drug effects*
  6. Wan Mohd Kamaluddin WNF, Rismayuddin NAR, Ismail AF, Mohamad Aidid E, Othman N, Mohamad NAH, et al.
    Arch Oral Biol, 2020 Oct;118:104855.
    PMID: 32801092 DOI: 10.1016/j.archoralbio.2020.104855
    OBJECTIVES: This systematic review aimed to investigate the effects if probiotics can inhibit oral carcinogenesis.

    DESIGN: PubMed, Web of Science, Scopus, and PLOS databases were searched up to February 2020 to identify randomised controlled trials that fulfilled the eligibility criteria. Joanna Briggs Institute (JBI) Critical Appraisal Tool was used for quality assessment of articles. This review was performed according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA-P) 2015 protocol guidelines.

    RESULT: The initial search retrieved 774 articles. Of these, only five articles were included in the qualitative synthesis. Two out of the five papers were further analysed for quantitative synthesis in meta-analysis. The majority of the included studies were found to be of "moderate quality". The qualitative synthesis found four probiotics that exhibited potential therapeutic effects in oral carcinogenesis, includingAcetobacter syzygii, AJ2, Lactobacillus plantarum, and Lactobacillus salivarius REN. Among them, the application of L. salivarius REN resulted in a 95 % lower risk for developing oral cancer (p 

    Matched MeSH terms: Carcinogenesis*
  7. Sayuddin ENEN, Taher M, Arzmi MH, Burhanudin NA, Rostam MA
    Arch Oral Biol, 2024 Jan;157:105841.
    PMID: 37952507 DOI: 10.1016/j.archoralbio.2023.105841
    OBJECTIVE: In this article, we review the current studies on the role of podoplanin in oral cancer and the potential application of podoplanin inhibitors as a therapeutic agent for oral cancer.

    DESIGN: The narrative review approach was conducted, providing a comprehensive perspective of related literature. Publications addressing podoplanin and its inhibitors in the context of oral cancer were retrieved from PubMed and Scopus databases.

    RESULTS: Podoplanin has emerged as a biomarker and therapeutic agent for oral cancer. Numerous studies have reported high podoplanin expression in oral cancer and pre-cancerous lesions compared to normal cells. A specific inhibitor targeting podoplanin may have the potential to prevent oral carcinogenesis via interfering with the pathway of cancerous cells involved in cell proliferation and metastasis. Antibodies, chimeric antigen receptor (CAR)-T cells, cancer-specific mAb (CasMab), synthetic molecules, and lectins are among the materials used as anticancer agents targeting podoplanin. Plant-derived lectins appear to demonstrate a unique advantage against alternative candidates.

    CONCLUSIONS: The use of podoplanin inhibitors in place of existing therapeutic approaches could be a promising and novel approach to the prevention and treatment of oral cancer. Nevertheless, further research is required to investigate the practical application of such inhibitors.

    Matched MeSH terms: Carcinogenesis
  8. Hooshmand S, Ghaderi A, Yusoff K, Thilakavathy K, Rosli R, Mojtahedi Z
    Asian Pac J Cancer Prev, 2014;15(7):3311-7.
    PMID: 24815488
    BACKGROUND: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest.

    MATERIALS AND METHODS: ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα.

    RESULTS: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells.

    CONCLUSIONS: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

    Matched MeSH terms: Carcinogenesis/genetics
  9. Karim NA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AF
    Asian Pac J Cancer Prev, 2016;17(8):3675-86.
    PMID: 27644601
    Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as "murungai" or "kelor". Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research needs to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.
    Matched MeSH terms: Carcinogenesis/drug effects*
  10. Tan BL, Esa NM, Rahman HS, Hamzah H, Karim R
    PMID: 25129221 DOI: 10.1186/1472-6882-14-304
    Brewers' rice is locally known as temukut, is a byproduct of the rice milling process, and consists of broken rice, rice bran, and rice germ. Unlike rice bran, the health benefit of brewers' rice has yet to be fully studied. Our present study aimed to identify the chemopreventive potential of brewers' rice with colonic tumor formation and to examine further the mechanistic action of brewers' rice during colon carcinogenesis.
    Matched MeSH terms: Carcinogenesis
  11. Md Roduan MR, Abd Hamid R, Mohtarrudin N
    BMC Complement Altern Med, 2019 Sep 03;19(1):238.
    PMID: 31481122 DOI: 10.1186/s12906-019-2650-1
    BACKGROUND: Annonacin, an annonaceous acetogenin isolated from Annona muricata has been reported to be strongly cytotoxic against various cell lines, in vitro. Nevertheless, its effect against in vivo tumor promoting activity has not been reported yet. Therefore, this study was aimed to investigate antitumor-promoting activity of annonacin via in vivo two-stage mouse skin tumorigenesis model and its molecular pathways involved.

    METHODS: Mice were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μL) followed by, in subsequent week, repeated promotion (twice weekly; 22 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μL). Annonacin (85 nM) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application for 22 weeks. Upon termination, histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted to elucidate the potential mechanism of annonacin.

    RESULTS: With comparison to the carcinogen control, Annonacin significantly increased the tumor latency period and reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, mTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis.

    CONCLUSIONS: Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity.

    Matched MeSH terms: Carcinogenesis/drug effects*
  12. Tan BL, Norhaizan ME
    Biomed Res Int, 2017;2017:9017902.
    PMID: 28210630 DOI: 10.1155/2017/9017902
    Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA), γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention.
    Matched MeSH terms: Carcinogenesis/drug effects*
  13. Al-Shibli SM, Amjad NM, Al-Kubaisi MK, Mizan S
    Biochem Biophys Res Commun, 2017 Jan 22;482(4):1102-1106.
    PMID: 27914811 DOI: 10.1016/j.bbrc.2016.11.165
    Leptin (LEP) and leptin receptor (LEPR) have long been found associated with breast cancer. So far no high-resolution method such as electron microscopy has been used to investigate the subcellular localization of leptin and leptin receptor in breast cancer. We collected cancer and non-cancer breast tissues from 51 women with invasive ductal breast cancer. Leptin and leptin receptor in the tissues were estimated using immunohistochemistry (IHC). LEP and LEPR were localized at subcellular level by immunocytochemistry (ICC) using ultra-fine gold particle conjugated antibody, and visualized with transmission electron microscopy (TEM). IHC showed high presence of LEP and LEPR in 65% and 67% respectively of the breast cancer samples, 100% and 0% respectively of the adipose tissue samples, and no high presence in the non-cancer breast tissue samples. On TEM views both LEP and LEPR were found highly concentrated within the nucleus of the cancer cells, indicating that nucleus is the principal seat of action. However, presence of high concentration of LEP does not necessarily prove its over-expression, as often concluded, because LEP could be internalized from outside by LEPR in the cells. In contrast, LEPR is definitely over-expressed in the ductal breast cancer cells. Therefore, we hypothesize that over-expression of LEPR, rather than that of LEP has a fundamental role in breast carcinogenesis in particular, and probably for LEP-LEPR associated tumors in general.
    Matched MeSH terms: Carcinogenesis
  14. Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN
    Biochim Biophys Acta Gene Regul Mech, 2022 10;1865(7):194873.
    PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873
    Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
    Matched MeSH terms: Carcinogenesis/genetics
  15. Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I
    Biochimie, 2020 Dec;179:23-31.
    PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005
    Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
    Matched MeSH terms: Carcinogenesis
  16. Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, et al.
    Bioengineered, 2023 Dec;14(1):2259526.
    PMID: 37747278 DOI: 10.1080/21655979.2023.2259526
    The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
    Matched MeSH terms: Carcinogenesis
  17. Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, et al.
    Biomark Insights, 2014;9:77-84.
    PMID: 25232277 DOI: 10.4137/BMI.S16553
    FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
    Matched MeSH terms: Carcinogenesis
  18. Md Roduan MR, Hamid RA, Sulaiman H, Mohtarrudin N
    Biomed Pharmacother, 2017 Oct;94:481-488.
    PMID: 28779710 DOI: 10.1016/j.biopha.2017.07.133
    Annona muricata, locally known as soursop has been reported to exhibit antiproliferative activities against various cancer cell lines. In this current study, we have investigated the antitumor promotion of various fractions of Annona muricata leaves (AML); hexane (AMLH), dichloromethane (AMLD) and methanol (AMLM) fraction respectively on 7, 12-dimethylbenz[α]anthracene (DMBA) induced and 12-0-tetradecaboylphorbol-13-acetate (TPA) promoted skin tumorigenesis in mice via morphological assessment, biochemical analysis and histopathological evaluation. The results of the study revealed significant inhibition in tumor incidence, tumor burden and tumor volume in the groups received AMLH and AMLD, respectively, and suppressive effects in group received AMLM compared with carcinogen control group at week 21. Superoxide dismutase, catalase, and lipid peroxidation levels were returned to near normal by administration of AML to DMBA/TPA-induced mice. The above findings were supported by histopathological studies, in which the extensive epidermal hyperplasia in carcinogen control group was restored to normal in AML treated groups. Whilst, annonacin, a major annaonaceous acetogenin was found to be the highest in AMLH and AMLD. From the present study, it can be inferred that AML supressed DMBA/TPA-induced skin tumor and this antitumor-promoting activity may be linked to the antioxidant/free radical-scavenging constituents of the extract and annonacin contained in the extracts.
    Matched MeSH terms: Carcinogenesis/drug effects; Carcinogenesis/pathology*
  19. Han H, Hu S, Syed-Hassan SSA, Xiao Y, Wang Y, Xu J, et al.
    Bioresour Technol, 2017 Jul;236:138-145.
    PMID: 28399417 DOI: 10.1016/j.biortech.2017.03.112
    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions.
    Matched MeSH terms: Carcinogenesis
  20. Higuchi H, Yamakawa N, Imadome KI, Yahata T, Kotaki R, Ogata J, et al.
    Blood, 2018 06 07;131(23):2552-2567.
    PMID: 29685921 DOI: 10.1182/blood-2017-07-794529
    Epstein-Barr virus (EBV) causes various diseases in the elderly, including B-cell lymphoma such as Hodgkin's lymphoma and diffuse large B-cell lymphoma. Here, we show that EBV acts in trans on noninfected macrophages in the tumor through exosome secretion and augments the development of lymphomas. In a humanized mouse model, the different formation of lymphoproliferative disease (LPD) between 2 EBV strains (Akata and B95-8) was evident. Furthermore, injection of Akata-derived exosomes affected LPD severity, possibly through the regulation of macrophage phenotype in vivo. Exosomes collected from Akata-lymphoblastoid cell lines reportedly contain EBV-derived noncoding RNAs such as BamHI fragment A rightward transcript (BART) micro-RNAs (miRNAs) and EBV-encoded RNA. We focused on the exosome-mediated delivery of BART miRNAs. In vitro, BART miRNAs could induce the immune regulatory phenotype in macrophages characterized by the gene expressions of interleukin 10, tumor necrosis factor-α, and arginase 1, suggesting the immune regulatory role of BART miRNAs. The expression level of an EBV-encoded miRNA was strongly linked to the clinical outcomes in elderly patients with diffuse large B-cell lymphoma. These results implicate BART miRNAs as 1 of the factors regulating the severity of lymphoproliferative disease and as a diagnostic marker for EBV+ B-cell lymphoma.
    Matched MeSH terms: Carcinogenesis/genetics; Carcinogenesis/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links