Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Surien O, Ghazali AR, Masre SF
    Histol Histopathol, 2020 Oct;35(10):1159-1170.
    PMID: 32893871 DOI: 10.14670/HH-18-247
    BACKGROUND: Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.

    METHODS: A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.

    RESULTS: All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.

    CONCLUSIONS: The underlying molecular mechanisms of PS in lung SCC should be further studied.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  2. Aminuddin A, Ng PY, Leong CO, Chua EW
    Sci Rep, 2020 May 12;10(1):7885.
    PMID: 32398775 DOI: 10.1038/s41598-020-64664-3
    Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  3. Chai AWY, Lim KP, Cheong SC
    Semin Cancer Biol, 2020 04;61:71-83.
    PMID: 31542510 DOI: 10.1016/j.semcancer.2019.09.011
    Oral squamous cell carcinomas (OSCC) are a heterogeneous group of cancers arising from the mucosal lining of the oral cavity. A majority of these cancers are associated with lifestyle risk habits including smoking, excessive alcohol consumption and betel quid chewing. Cetuximab, targeting the epidermal growth factor receptor was approved for the treatment of OSCC in 2006, and remains the only molecular targeted therapy available for OSCC. Here, we reviewed the current findings from genomic analyses of OSCC and discuss how these studies inform on the biological mechanisms underlying OSCC. Exome sequencing revealed that the significantly mutated genes are mainly tumour suppressors. Mutations in FAT1, CASP8, CDKN2A, and NOTCH1 are more frequently found in OSCC when compared to non-OSCC head and neck cancers and other squamous cell carcinomas, and HRAS and PIK3CA are the only significantly mutated oncogenes. The distribution of these mutations also differs in populations with distinct risk habits. Gene expression-based molecular classification showed that OSCC can be divided into distinct subtypes and these have a preferential response to different types of therapies, suggesting that these classifications could have clinical implications. More recently, with the approval of checkpoint inhibitors for the treatment of cancers including OSCC, genomics studies also dissected the genetic signatures of the immune compartment to delineate immune-active and -exhausted subtypes that could inform on the immune status of OSCC patients and guide the development of novel therapies to improve response to immunotherapy. Taken together, genomics studies are informing on the biology of both the epithelial and stromal compartments underlying OSCC development, and we discuss the opportunities and challenges in using these to derive clinical benefit for OSCC patients.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  4. Siriwardena BSMS, Karunathilaka HDNU, Kumarasiri PVR, Tilakaratne WM
    Biomed Res Int, 2020;2020:2059240.
    PMID: 33123565 DOI: 10.1155/2020/2059240
    Background: Nodal metastasis is a critical factor in predicting the prognosis of oral squamous cell carcinoma (OSCC). When patients present with a clinically positive neck, the treatment of choice is radical neck dissection. However, management of a clinically negative neck is still a subject of significant controversy.

    Aim: This study was carried out in order to propose a model to predict regional lymph node metastasis of OSCC using histological parameters such as tumour stage, tumour size, pattern of invasion (POI), differentiation of tumour, and host immune response, together with the expression levels of six biomarkers (periostin, HIF-1α, MMP-9, β-catenin, VEGF-C, and EGFR), and, furthermore, to compare the impact of all these parameters on recurrence and 3 yr and 5 yr survival rates. Materials and Method. Histological materials collected from the archives were used to evaluate histological parameters and immunohistochemical profiles. Standard methods were used for immunohistochemistry and for evaluation of results. Data related to recurrence and survival (3 and 5 years) was also recorded. Clinical data was collected from patients' records.

    Results: Male to female ratio was 3 : 1. The commonest site of OSCC was the buccal mucosa, and majority of them were T3 or T4 tumours presented at stage 4. 62.5% of the tumours were well differentiated. Three-year and 5-year survival rates were significantly associated with lymph node metastasis and recurrence. POI was significantly correlated with tumour size, stage, 3-year survival, EGFR, HIF-1α, periostin, and MMP-9 (p < 0.05). Expression of EGFR showed a direct association with metastasis (p < 0.05).

    Conclusion: POI, level of differentiation, and expression of EGFR are independent prognostic markers for lymph node metastasis. Therefore, these parameters may help in treatment planning of a clinically negative neck.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  5. Kaur G, Balasubramaniam SD, Lee YJ, Balakrishnan V, Oon CE
    Asian Pac J Cancer Prev, 2019 Oct 01;20(10):3043-3049.
    PMID: 31653153 DOI: 10.31557/APJCP.2019.20.10.3043
    OBJECTIVE: Minichromosome maintenance complex (MCM) proteins are essential for the process of DNA replication and cell division. This study aimed to evaluate MCM genes expression profiles and MCM2 protein in HPV-associated cervical carcinogenesis.

    METHODOLOGY: MCM2, 4, 5 and 7 genes expression profiles were evaluated in three cervical tissue samples each of normal cervix, human papillomavirus (HPV)-infected low grade squamous intraepithelial lesion (LSIL), high grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma (SCC), using Human Transcriptome Array 2.0 and validated by nCounter® PanCancer Pathway NanoString Array. Immunohistochemical expression of MCM2 protein was semi-quantitatively assessed by histoscore in tissue microarrays containing 9 cases of normal cervix, 10 LSIL, 10 HSIL and 42 cases of SCC.

    RESULTS: MCM2, 4, 5 and 7 genes expressions were upregulated with increasing fold change during the progression from LSIL to HSIL and the highest in SCC. MCM2 gene had the highest fold change in SCC compared to normal cervix. Immunohistochemically, MCM2 protein was localised in the nuclei of basal cells of normal cervical epithelium and dysplastic-neoplastic cells of CIN and SCC. There was a significant difference in MCM2 protein expression between the histological groups (P = 0.039), and histoscore was the highest in HSIL compared to normal cervix (P = 0.010).

    CONCLUSION: The upregulation of MCM genes expressions in cervical carcinogenesis reaffirms MCM as a proliferative marker in DNA replication pathway, whereby proliferation of dysplastic and cancer cells become increasingly dysregulated and uncontrolled. A strong expression of MCM2 protein in HSIL may aid as a concatenated screening tool in detecting pre-cancerous cervical lesions.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  6. Hii LW, Lim SE, Leong CO, Chin SY, Tan NP, Lai KS, et al.
    BMC Complement Altern Med, 2019 Sep 14;19(1):257.
    PMID: 31521140 DOI: 10.1186/s12906-019-2663-9
    BACKGROUND: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

    METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells.

    CONCLUSION: These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  7. Gan CP, Sam KK, Yee PS, Zainal NS, Lee BKB, Abdul Rahman ZA, et al.
    Cell Oncol (Dordr), 2019 Aug;42(4):477-490.
    PMID: 30949979 DOI: 10.1007/s13402-019-00437-z
    PURPOSE: Oral squamous cell carcinoma (OSCC) is a challenging disease to treat. Up to 50% of OSCC patients with advanced disease develop recurrences. Elucidation of key molecular mechanisms underlying OSCC development may provide opportunities to target specific genes and, thus, to improve patient survival. In this study, we examined the expression and functional role of interferon transmembrane protein 3 (IFITM3) in OSCC development.

    METHODS: The expression of IFITM3 in OSCC and normal oral mucosal tissues was assessed by qRT-PCR and immunohistochemistry. The role of IFITM3 in driving OSCC cell proliferation and survival was examined using siRNA-mediated gene knockdown, and the role of IFITM3 in driving cell cycle regulators was examined using Western blotting.

    RESULTS: We found that IFITM3 is overexpressed in more than 79% of primary OSCCs. We also found that IFITM3 knockdown led to impaired OSCC cell growth through inhibition of cell proliferation, induction of cell cycle arrest, senescence and apoptosis. In addition, we found that IFITM3 knockdown led to reduced expressions of CCND1 and CDK4 and reduced RB phosphorylation, leading to inhibition of OSCC cell growth. This information may be instrumental for the design of novel targeted therapeutic strategies.

    CONCLUSIONS: From our data we conclude that IFITM3 is overexpressed in OSCC and may regulate the CCND1-CDK4/6-pRB axis to mediate OSCC cell growth.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism*
  8. Mohd Isa SA, Md Salleh MS, Ismail MP, Hairon SM
    Asian Pac J Cancer Prev, 2019 Apr 29;20(4):1081-1087.
    PMID: 31030477
    Background: Cervical cancer is a preventable disease caused by human papillomaviruses. It is the third most
    common cancer to occur in women of reproductive age. The ADAM9 protein plays a role in basement membrane
    degradation and tumour metastasis in certain types of tumour. Thus, it has the potential to become a new targeted
    therapy. The objective of this study was to investigate ADAM9 expression in cervical cancer and to determine the
    factors associated with ADAM9-positive expression. Methods: This cross-sectional study was conducted in Hospital
    Universiti Sains Malaysia (HUSM) Kelantan, Malaysia from December 2010 to December 2012. Histological slides
    obtained from 95 cervical cancer cases diagnosed and/or treated in HUSM from 2000 to 2010 were analysed. The
    ADAM9 immunostain was then performed on the paraffin blocks. The statistical data entry and analysis were done
    using SPSS version 18.0. Multiple logistic regression analysis was performed to determine the factors associated with
    ADAM9-positive expression. Result: Of the 95 cervical cancer patients included in the study, 72 (75.8%) patients showed
    positive ADAM9 expression. The mean age of the patients was 53.89 (10.83) years old. Squamous cell carcinoma was
    the most common type of cervical cancer (n = 67, 70.5%). Factors that showed a statistically significant association
    with ADAM9-positive expression were tumour size (adjusted odds ratio [adj. OR]: 1.08; 95% confidence interval
    [CI]: 1.02, 1.13; p = 0.004), distant metastasis (adj. OR: 12.82; 95% CI: 1.91, 86.13; p = 0.009) and the histological
    type of cervical cancer (i.e. squamous cell carcinoma) (adj. OR: 7.39; 95% CI: 1.42, 38.51; p = 0.017). Conclusion:
    The ADAM9 immunostain was consistently positive in malignant cells. Thus, ADAM9 expression can be used as a
    prognostic/therapeutic indicator in aiding clinician decision-making regarding patient treatment (targeted therapy).
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  9. Yee PS, Zainal NS, Gan CP, Lee BKB, Mun KS, Abraham MT, et al.
    Target Oncol, 2019 04;14(2):223-235.
    PMID: 30806895 DOI: 10.1007/s11523-019-00626-8
    BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits.

    OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.

    METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.

    RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.

    CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  10. Wang H, Lakshmipriya T, Chen Y, Gopinath SCB
    Biomed Res Int, 2019;2019:2807123.
    PMID: 31080815 DOI: 10.1155/2019/2807123
    Cervical cancer is a life-threatening complication, appearing as the uncontrolled growth of abnormal cells in the lining of the cervix. Every year, increasing numbers of cervical cancer cases are reported worldwide. Different identification strategies were proposed to detect cervical cancer at the earlier stages using various biomarkers. Squamous cell carcinoma antigen (SCC-Ag) is one of the potential biomarkers for this diagnosis. Nanomaterial-based detection systems were shown to be efficient with different clinical biomarkers. In this study, we have demonstrated strontium oxide-modified interdigitated electrode (IDE) fabrication by the sol-gel method and characterized by scanning electron microscopy and high-power microscopy. Analysis of the bare devices indicated the reproducibility with the fabrication, and further pH scouting on the device revealed that the reliability of the working pH ranges from 3 to 9. The sensing surface was tested to detect SCC-Ag against its specific antibody; the detection limit was found to be 10 pM, and the sensitivity was in the range between 1 and 10 pM as calculated by 3σ. The specificity experiment was carried out using major proteins from human serum, such as albumin and globulin. SCC-Ag was shown to be selectively detected on the strontium oxide-modified IDE surface.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  11. Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, et al.
    Phytomedicine, 2018 Jan 15;39:33-41.
    PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011
    BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown.

    PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action.

    METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting.

    RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins.

    CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  12. Zulkapli R, Abdul Razak F, Zain RB
    Integr Cancer Ther, 2017 09;16(3):414-425.
    PMID: 28818030 DOI: 10.1177/1534735416675950
    Cancers involving the oral cavity, head, and neck regions are often treated with cisplatin. In cancer therapy, the main target is to eliminate unwanted cancerous cells. However, reports on the nonselective nature of this drug have raised few concerns. Incorrect nutritional habits and lifestyle practices have been directly linked to cancer incidence. Nutrients with antioxidant activity inhibit cancer cells development, destroying them through oxidative stress and apoptosis. α-tocopherol, the potent antioxidant form of vitamin E is a known scavenger of free radicals. In vitro study exhibited effective antitumor activity of α-tocopherol on ORL-48 at 2.5 ± 0.42 µg/mL. Cisplatin exhibited stronger activity at 1.0 ± 0.15 µg/mL, but unlike α-tocopherol it exhibited cytotoxicity on normal human epidermal keratinocytes at very low concentration (<0.1 µg/mL). Despite the lower potency of α-tocopherol, signs of apoptosis such as the shrinkage of cells and appearance of apoptotic bodies were observed much earlier than cisplatin in time lapse microscopy. No apoptotic vesicles were formed with cisplatin, instead an increased population of cells in the holoclone form which may suggest different induction mechanisms between both agents. High accumulation of cells in the G0/G1 phase were observed through TUNEL and annexin V-biotin assays, while the exhibition of ultrastructural changes of the cellular structures verified the apoptotic mode of cell death by both agents. Both cisplatin and α-tocopherol displayed cell cycle arrest at the Sub G0 phase. α-tocopherol thus, showed potential as an antitumour agent for the treatment of oral cancer and merits further research.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  13. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, et al.
    Carcinogenesis, 2017 01;38(1):76-85.
    PMID: 27803052 DOI: 10.1093/carcin/bgw113
    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  14. Lee HM, Patel V, Shyur LF, Lee WL
    Phytomedicine, 2016 Nov 15;23(12):1535-1544.
    PMID: 27765374 DOI: 10.1016/j.phymed.2016.09.005
    BACKGROUND: Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment.

    HYPOTHESIS: Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin.

    METHODS: We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting.

    RESULTS: Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone.

    CONCLUSION: Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  15. Auzair LB, Vincent-Chong VK, Ghani WM, Kallarakkal TG, Ramanathan A, Lee CE, et al.
    Eur Arch Otorhinolaryngol, 2016 Jul;273(7):1885-93.
    PMID: 26138391 DOI: 10.1007/s00405-015-3703-9
    Caveolin-1 (Cav-1) and Actin-Related Protein 2/3 Complex, Subunit 1B (ARPC1B) have been implicated in various human cancers, yet its role in tumorigenesis remains controversial. Therefore, this study aims to determine the protein expression of these two genes in oral squamous cell carcinomas (OSCCs) and to evaluate the clinical and prognostic impact of these genes in OSCC. Protein expressions of these two genes were determined by immunohistochemistry technique. The association between Cav-1 and ARPC1B with clinico-pathological parameters was evaluated by Chi-square test (or Fisher exact test where appropriate). Correlation between the protein expressions of these 2 genes with survival was analyzed using Kaplan-Meier and Cox regression models. Cav-1 and ARPC1B were found to be significantly over-expressed in OSCC compared to normal oral mucosa (p = 0.002 and p = 0.033, respectively). Low level of ARPC1B protein expression showed a significant correlation with lymph node metastasis (LNM) (p = 0.010) and advanced tumor staging (p = 0.003). Kaplan-Meier survival analyses demonstrated that patients with over-expression of Cav-1 protein were associated with poor prognosis (p = 0.030). Adjusted multivariate Cox regression model revealed that over-expression of Cav-1 remained as an independent significant prognostic factor for OSCC (HRR = 2.700, 95 % CI 1.013-7.198, p = 0.047). This study demonstrated that low-expression of ARPC1B is significantly associated with LNM and advanced tumor staging whereas high expression of Cav-1 can be a prognostic indicator for poor prognosis in OSCC patients.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
  16. Bates T, Kennedy M, Diajil A, Goodson M, Thomson P, Doran E, et al.
    Cancer Epidemiol Biomarkers Prev, 2016 Jun;25(6):927-35.
    PMID: 27197272 DOI: 10.1158/1055-9965.EPI-15-0949
    BACKGROUND: Oral squamous cell carcinoma (OSCC) is a global healthcare problem associated with poor clinical outcomes. Early detection is key to improving patient survival. OSCC may be preceded by clinically recognizable lesions, termed oral potentially malignant disorders (OPMD). As histologic assessment of OPMD does not accurately predict their clinical behavior, biomarkers are required to detect cases at risk of malignant transformation. Epidermal growth factor receptor gene copy number (EGFR GCN) is a validated biomarker in lung non-small cell carcinoma. We examined EGFR GCN in OPMD and OSCC to determine its potential as a biomarker in oral carcinogenesis.

    METHODS: EGFR GCN was examined by in situ hybridization (ISH) in biopsies from 78 patients with OPMD and 92 patients with early-stage (stages I and II) OSCC. EGFR ISH signals were scored by two pathologists and a category assigned by consensus. The data were correlated with patient demographics and clinical outcomes.

    RESULTS: OPMD with abnormal EGFR GCN were more likely to undergo malignant transformation than diploid cases. EGFR genomic gain was detected in a quarter of early-stage OSCC, but did not correlate with clinical outcomes.

    CONCLUSION: These data suggest that abnormal EGFR GCN has clinical utility as a biomarker for the detection of OPMD destined to undergo malignant transformation. Prospective studies are required to verify this finding. It remains to be determined if EGFR GCN could be used to select patients for EGFR-targeted therapies.

    IMPACT: Abnormal EGFR GCN is a potential biomarker for identifying OPMD that are at risk of malignant transformation. Cancer Epidemiol Biomarkers Prev; 25(6); 927-35. ©2016 AACR.

    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism*
  17. Yip WK, He PY, Abdullah MA, Yusoff S, Seow HF
    Pathol Oncol Res, 2016 Apr;22(2):413-9.
    PMID: 26581613 DOI: 10.1007/s12253-015-0007-8
    Molecular alterations in PIK3CA oncogene that encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K p110α) are commonly found in human cancers. In this study, we examined the expression of PI3K p110α and PIK3CA gene amplification in 74 nasopharyngeal carcinoma (NPC) cases. Immunohistochemical staining demonstrated overexpression of PI3K p110α protein in 44.6% (33/74) of NPCs and 4.8% (2/42) of the adjacent normal nasopharyngeal mucosa. Copy number of PIK3CA gene was successfully analyzed in 51 of the total NPC cases and 19 non-malignant nasopharynx tissues by quantitative real-time PCR. Using mean + 2(standard deviation) of copy numbers in the non-malignant nasopharynx tissues as a cutoff value, PIK3CA copy number gain was found in 10 of 51 (19.6%) NPC cases. High PI3K p110α expression level was correlated with increased PIK3CA copy number (Spearman's rho =0.324, P = 0.02). PI3K p110α expression and PIK3CA copy number did not associate with Akt phosphorylation, and patient and tumor variables. This study suggests that PI3K p110α overexpression, which is attributed, at least in part, to PIK3CA gene amplification, may contribute to NPC pathogenesis. However, these molecular aberrations may not be responsible for activation of Akt signaling in NPC.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism*
  18. Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT, et al.
    Oncotarget, 2014 Oct 30;5(20):9626-40.
    PMID: 25275299
    Oral squamous cell carcinoma (OSCC) has a propensity to spread to the cervical lymph nodes (LN). The presence of cervical LN metastases severely impacts patient survival, whereby the two-year survival for oral cancer patients with involved LN is ~30% compared to over 80% in patients with non-involved LN. Elucidation of key molecular mechanisms underlying OSCC metastasis may afford an opportunity to target specific genes, to prevent the spread of OSCC and to improve patient survival. In this study, we demonstrated that expression of the heterotrimeric G-protein alpha-12 (Gα12) is highly up-regulated in primary tumors and LN of OSCC patients, as assessed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). We also found that exogenous expression of the constitutively activated-form of Gα12 promoted cell migration and invasion in OSCC cell lines. Correspondingly, inhibition of Gα12 expression by shRNA consistently inhibited OSCC cell migration and invasion in vitro. Further, the inhibition of G12 signaling by regulator of G-protein signaling (RGS) inhibited Gα12-mediated RhoA activation, which in turn resulted in reduced LN metastases in a tongue-orthotopic xenograft mouse model of oral cancer. This study provides a rationale for future development and evaluation of drug candidates targeting Gα12-related pathways for metastasis prevention.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism*
  19. Sarchio SNE, Scolyer RA, Beaugie C, McDonald D, Marsh-Wakefield F, Halliday GM, et al.
    J Invest Dermatol, 2014 Apr;134(4):1091-1100.
    PMID: 24226205 DOI: 10.1038/jid.2013.424
    One way sunlight causes skin cancer is by suppressing anti-tumor immunity. A major mechanism involves altering mast cell migration via the C-X-C motif chemokine receptor 4-C-X-C motif chemokine ligand 12 (CXCR4-CXCL12) chemokine pathway. We have discovered that pharmacologically blocking this pathway with the CXCR4 antagonist AMD3100 prevents both UV radiation-induced immune suppression and skin cancer. The majority of control mice receiving UV-only developed histopathologically confirmed squamous cell carcinomas. In contrast, skin tumor incidence and burden was significantly lower in AMD3100-treated mice. Perhaps most striking was that AMD3100 completely prevented the outgrowth of latent tumors that occurred once UV irradiation ceased. AMD3100 protection from UV immunosuppression and skin cancer was associated with reduced mast cell infiltration into the skin, draining lymph nodes, and the tumor itself. Thus a major target of CXCR4 antagonism was the mast cell. Our results indicate that interfering with UV-induced CXCL12 by antagonizing CXCR4 significantly inhibits skin tumor development by blocking UV-induced effects on mast cells. Hence, the CXCR4-CXCL12 chemokine pathway is a novel therapeutic target in the prevention of UV-induced skin cancer.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism*
  20. Lim KP, Chun NA, Ismail SM, Abraham MT, Yusoff MN, Zain RB, et al.
    PLoS One, 2014;9(8):e103975.
    PMID: 25153698 DOI: 10.1371/journal.pone.0103975
    Regulatory T cells (Tregs), a subset of CD4+ T cells plays a pivotal role in regulating the immune system. An increase in Treg numbers enables cancer progression by dampening the immune system and allowing tumor cells to evade immune detection and destruction. An increase in Treg numbers and expression of inhibitory cytokines including TGF-β and IL-10 are mechanisms by which Tregs exert their immune suppressive function. However, the presence of Tregs and inhibitory cytokines in oral cancer patients is still unclear. In this study, the presence of circulating Tregs in 39 oral cancer patients and 24 healthy donors was examined by studying the presence of the CD4+CD25hiCD127low cell population in their peripheral blood mononuclear cells using flow cytometry. Serum levels of TGF-β and IL-10 were measured by ELISA. T cell subsets of OSCC patients were found to differ significantly from healthy donors where a decrease in CD8+ cytotoxic T cells and an increase in Tregs (CD4+CD25hiCD127low) were observed. Further, the ratio of CD8+ T cells/Tregs was also decreased in patients compared to healthy donors. The presence of Tregs was accompanied by a decrease in IL-10 but not TGF-β secretion in OSCC patients when compared to donors; in addition, the analysis also revealed that an increased presence of Tregs was accompanied by better patient survival. Amongst OSCC patients, smokers had significantly higher levels of TGF-β. It is apparent that the immune system is compromised in OSCC patients and the characterization of the Treg subpopulation could form a basis for improving our understanding of the perturbations in the immune system that occur during OSCC tumorigenesis.
    Matched MeSH terms: Carcinoma, Squamous Cell/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links