Displaying publications 1 - 20 of 190 in total

Abstract:
Sort:
  1. Matsusaka K, Ishima Y, Maeda H, Kinoshita R, Ichimizu S, Taguchi K, et al.
    J Pharm Sci, 2019 11;108(11):3592-3598.
    PMID: 31288036 DOI: 10.1016/j.xphs.2019.07.002
    Nanosize plasma proteins could be used as a biomimetic drug delivery system (DDS) for cancer treatment when loaded with anticancer drugs based on the fact that plasma proteins can serve as a source of nutrients for cancer cells. This prompted us to investigate the potential of α1-acid glycoprotein (AGP) for this role because it is a nanosize plasma protein and binds a variety of anticancer agents. Pharmacokinetic analyses indicated that AGP is distributed more extensively in tumor tissue than human serum albumin, which was already established as a cancer DDS carrier. AGP is possibly being incorporated into tumor cells via endocytosis pathways. Moreover, a synthetic AGP-derived peptide which possesses a high ability to form an α-helix, as deduced from the primary structure of AGP, was also taken up by the tumor cells. AGP loaded with anticancer agents, such as paclitaxel or nitric oxide, efficiently induced tumor cell death. These results suggest that AGP has the potential to be a novel DDS carrier for anticancer agents.
    Matched MeSH terms: Cell Death/drug effects
  2. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Cell Death/drug effects*
  3. Lee SK, Tan KW, Ng SW, Ooi KK, Ang KP, Abdah MA
    PMID: 24231745 DOI: 10.1016/j.saa.2013.10.084
    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, (1)H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.
    Matched MeSH terms: Cell Death/drug effects
  4. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Cell Death/drug effects
  5. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
    Matched MeSH terms: Cell Death/drug effects
  6. Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K
    J Diet Suppl, 2020 Oct 14.
    PMID: 33962540 DOI: 10.1080/19390211.2020.1830223
    Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p 
    Matched MeSH terms: Cell Death
  7. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Cell Death/drug effects
  8. Ayanniyi AA, Fasasi MK
    Malays J Med Sci, 2013 Jan;20(1):88-91.
    PMID: 23613660
    A hot water burn is a thermal injury that results in cell death. Thermal eye injury triggers inflammatory processes, including inflammatory cell influx and/or the activation of various inflammatory cells, which result in the rapid accumulation of extravascular fluid in the ocular tissue. The ocular effect depends on the temperature of the water, and the final visual outcome depends on the severity of the damage to the intraocular structures. We report a 23-year-old woman who experienced a facial hot water burn that resulted in blindness. The patient presented late to the hospital after the unsuccessful use of traditional medication. Facial burns are a known cause of blindness. Public health education on prompt hospital presentation, and resistance to the use of potentially harmful traditional medicine in facial burns is suggested.
    Matched MeSH terms: Cell Death
  9. Kapitonova MY, Mansor O
    Malays J Pathol, 2003 Jun;25(1):15-27.
    PMID: 16196374
    OBJECTIVE: To determine in situ using TEM the balance of apoptosis and necrosis in the articular cartilage of patients with inflammatory (rheumatoid arthritis and seronegative spondyloarthritis) and degenerative (osteoarthritis) joint diseases and to establish possible correlation between the cell death rate and the matrix vesicles formation.
    METHODS: Cartilage samples of the knee joint were obtained from patients with rheumatoid arthritis (RA, 18 cases), osteoarthritis (OA, 22 cases), Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (AS, 6 cases) and psoriatic arthritis (PA, 6 cases) during arthroscopy or knee surgery. Normal samples taken from autopsy cases without a history of joint diseases were used as control. Samples were processed for TEM with subsequent semi-quantitative estimation of the cell death rate in the superficial, middle and deep zone of non-calcified articular cartilage, and computer-aided ultramorphometric evaluation of the matrix vesicles of different types.
    RESULTS: Both apoptotic and necrotic cell death could be identified in the cartilage of patients with inflammatory joint diseases, including seronegative spondyloarthritides and degenerative arthropathies. Apoptosis dominated over necrosis in all examined arthritides, including RA patients in which necrosis of the chondrocyte was the most frequent among arthropathies, while the highest apoptotic cell death rate was discovered in OA in which it correlated with the volume and numeric density of the matrix vesicles. These data provide evidence that apoptosis may contribute to the cartilage breakdown not only in RA and OA but also in the seronegative spondyloarthritides, which had a significantly higher apoptotic rate than the normal cartilage.
    Matched MeSH terms: Cell Death/physiology*
  10. Dashtdar H, Murali MR, Selvaratnam L, Balaji Raghavendran H, Suhaeb AM, Ahmad TS, et al.
    PeerJ, 2016;4:e1650.
    PMID: 26966647 DOI: 10.7717/peerj.1650
    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.
    Matched MeSH terms: Cell Death
  11. Razali FN, Sinniah SK, Hussin H, Zainal Abidin N, Shuib AS
    Int J Biol Macromol, 2016 Nov;92:185-193.
    PMID: 27365117 DOI: 10.1016/j.ijbiomac.2016.06.079
    A polysaccharide fraction from Solanum nigrum, SN-ppF3 was shown previously to have an immunomodulatory activity where it could possibly be used to enhance the host immune response in fighting cancer. The non-toxic SN-ppF3 was fed orally to breast tumor bearing-mice with concentrations of 250 and 500mg/kg for 10days. During the treatment period, size of the tumor and weight of the mice were monitored. At the end of the treatment, blood, tumor, spleen and thymus were harvested for physiological and immunological analyses. After the treatment, the tumor volume and tumor weight were significantly inhibited by 65% and 40%, respectively. Based on the histological observation, the treatment of SN-ppF3 resulted in the disruption of tumor cells morphology. The increase in infiltrating T cells, NK cells and macrophages were observed in tumor tissues of the treated mice, which partly explained the higher apoptosis tumor cells observed in the treated mice. Moreover, the level of TNF-α, IFN-γ and IL-4 were elevated, while the level of IL-6 was decreased significantly, in serum of the treated mice. These results suggested that tumor suppression mechanisms observed in SN-ppF3-treated mice were most probably due through enhancing the host immune response.
    Matched MeSH terms: Cell Death/drug effects
  12. Ahmad NS, Abdullah N, Yasin FM
    Toxicol Rep, 2020;7:693-699.
    PMID: 32528857 DOI: 10.1016/j.toxrep.2020.04.015
    Toxicity effect of reduced graphene oxide (rGO) and titanium dioxide (TiO2) nanomaterials (NMs) on Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria was assessed. For both strains, study demonstrated that the toxicity was time and concentration dependent which led to reduction in growth rate and cell death. Upon NMs exposure, an instantaneous cell death in E. coli culture was observed. This is in contrast with B. subtilis, in which the culture growth remained in the log phase; however their growth rate constant,

    μ
    g

    was reduced by ∼70%. The discrepancy between E. coli and B. subtilis was due to strain-specific response upon contact with NMs. TEM, SEM and EDX analysis revealed direct physical surface-surface interaction, as evidence from the adherence of NMs on the cell surface.
    Matched MeSH terms: Cell Death
  13. Ng WK, Saiful Yazan L, Yap LH, Wan Nor Hafiza WA, How CW, Abdullah R
    Biomed Res Int, 2015;2015:263131.
    PMID: 25632388 DOI: 10.1155/2015/263131
    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
    Matched MeSH terms: Cell Death/drug effects
  14. Tanaka KI, Shimoda M, Chuang VTG, Nishida K, Kawahara M, Ishida T, et al.
    Int J Pharm, 2018 Jan 15;535(1-2):140-147.
    PMID: 29122608 DOI: 10.1016/j.ijpharm.2017.11.012
    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu2+/Zn2+-induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu2+/Zn2+-induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu2+/Zn2+-induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu2+ and Zn2+ after Cu2+/Zn2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu2+/Zn2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu2+/Zn2+-induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases.
    Matched MeSH terms: Cell Death
  15. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R
    Saudi J Biol Sci, 2021 May;28(5):2987-2994.
    PMID: 34025176 DOI: 10.1016/j.sjbs.2021.02.039
    Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p 
    Matched MeSH terms: Cell Death
  16. Ong KS, Cheow YL, Lee SM
    J Adv Res, 2017 Jul;8(4):393-398.
    PMID: 28580180 DOI: 10.1016/j.jare.2017.05.007
    The increase in prevalence of antimicrobial-resistant bacteria (ARB) is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values) of 3.13 µg/mL (6.26 µg/mL) and 6.26 µg/mL (25.00 µg/mL) against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain) in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS) over time, which subsequently caused a significant increase in malondialdehyde (MDA) production (a marker for lipid peroxidation) and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay). This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.
    Matched MeSH terms: Cell Death
  17. Singh S, Prakash A, Kaur S, Ming LC, Mani V, Majeed AB
    Environ Toxicol, 2016 Aug;31(8):1017-26.
    PMID: 25864908 DOI: 10.1002/tox.22111
    Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.
    Matched MeSH terms: Cell Death/drug effects
  18. Moo EK, Amrein M, Epstein M, Duvall M, Abu Osman NA, Pingguan-Murphy B, et al.
    Biophys J, 2013 Oct 1;105(7):1590-600.
    PMID: 24094400 DOI: 10.1016/j.bpj.2013.08.035
    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
    Matched MeSH terms: Cell Death
  19. Selvaraju TR, Khaza'ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R
    Bosn J Basic Med Sci, 2014 Nov 16;14(4):195-204.
    PMID: 25428670 DOI: 10.17305/bjbms.2014.4.91
    Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson's and Alzheimer's diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.
    Matched MeSH terms: Cell Death/drug effects
  20. Syed Najmuddin SUF, Kamarudin AA, Abdul Sani S, Norrrahim MNF, Abdul Latif N', Wah LGP
    Cell Mol Biol (Noisy-le-grand), 2023 Jul 31;69(7):7-18.
    PMID: 37715444 DOI: 10.14715/cmb/2023.69.7.2
    The central dogma of molecular biology was no longer "central" after ground-breaking discoveries conveyed gene expression involves more complex physiological functions in cancer pathogenesis over the last decade. MicroRNAs (miRNAs) are short non-coding RNA that regulate gene expression, affecting key molecular pathways involved in sustaining the proliferative signalling for tumour development, evasion of cellular death, invasion, angiogenesis, as well as metastasis in a plethora of cancer types. MiRNA expression is dysregulated in human cancer through a number of processes, including miRNA gene amplification or deletion, faulty miRNA transcriptional regulation, dysregulated epigenetic alterations, and flaws in the miRNA biogenesis machinery. As a result, the current progress of treatment intervention focuses on modifying the miRNA levels in cancer therapeutics. Nevertheless, the mode of delivery and current management of miRNA therapies remains one of the many questions that need to be addressed. Here, we provided a comprehensive mini-review outlining the role of miRNA in cancer as well as its mode of delivery which includes liposomes, viral vectors, inorganic material-based nanoparticles, and cell-derived membrane vesicles. Likewise, the regulation of miRNA in other diseases and their challenges in translational research was also thoroughly discussed.
    Matched MeSH terms: Cell Death
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links