Displaying all 14 publications

Abstract:
Sort:
  1. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  2. Tarmizi AH, Lin SW, Kuntom A
    J Oleo Sci, 2008;57(5):275-85.
    PMID: 18391476
    Characterisation of fatty acids composition of three palm-based reference materials was carried out through inter-laboratory proficiency tests. Twelve laboratories collaborated in these tests and the fatty acids compositions of palm oil, palm olein and palm stearin were determined by applying the MPOB Test Methods p3.4:2004 and p3.5:2004. Determination of consensus values and their uncertainties were based on the acceptable statistical agreement of results obtained from the collaborating laboratories. The consensus values and uncertainties (%) for each palm oil reference material produced are listed as follows : 0.20% (C12:0), 1.66+/-0.05% (C14:0), 43.39+/-0.39% (C16:0), 0.14+/-0.06% (C16:1), 3.90+/-0.11% (C18:0), 40.95+/-0.23% (C18:1), 9.68+/-0.21% (C18:2), 0.16+/-0.07% (C18:3) and 0.31+/-0.08% (C20:0) for fatty acids composition of palm oil; 0.23+/-0.04% (C12:0), 1.02+/-0.04% (C14:0), 39.66+/-0.19% (C16:0), 0.18+/-0.07% (C16:1), 3.81+/-0.04% (C18:0), 44.01+/-0.08% (C18:1), 10.73+/-0.08% (C18:2), 0.20+/-0.06% (C18:3) and 0.34+/-0.04% (C20:0) for fatty acids composition of palm olein; and 0.20% (C12:0), 1.14+/-0.05% (C14:0), 49.42+/-0.25% (C16:0), 0.16+/-0.08% (C16:1), 4.15+/-0.10% (C18:0), 36.14+/-0.77% (C18:1), 7.95+/-0.29% (C18:2), 0.11+/-0.07% (C18:3) and 0.30+/-0.08% (C20:0) for fatty acids composition of palm stearin.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  3. Tan TC, AlKarkhi AF, Easa AM
    Food Chem, 2012 Oct 15;134(4):2430-6.
    PMID: 23442706 DOI: 10.1016/j.foodchem.2012.04.049
    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  4. Ahmad M, Ahmad A, Omar TFT, Mohammad R
    Crit Rev Anal Chem, 2024;54(8):2734-2744.
    PMID: 37052389 DOI: 10.1080/10408347.2023.2199432
    Increasing acidity of seawater caused by increasing anthropogenic carbon dioxide absorbed into the seawater attracted the interest of researchers due to increased concern on the deterioration of marine systems and food supply to humans. Total alkalinity (TA) is one of the important parameters in determining carbonate chemistry and is described as the capacity of the sample to neutralize acids. Over the last two decades, many analytical techniques have been developed to determine TA. This article presents a review of different analytical techniques including titration, colorimetric, spectrophotometric, and potentiometric analyses in measuring TA. Among these analytical techniques, potentiometry analysis, which utilizes electrode systems such as glass electrode and ion-selective electrode used as indicator electrodes, is the most used technique. Important features such as principle, limitations, and challenges of the involved technique are discussed in detail.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods
  5. Yew CW, Kumar SV
    Mol Biol Rep, 2012 Feb;39(2):1783-90.
    PMID: 21625851 DOI: 10.1007/s11033-011-0919-7
    MicroRNAs (miRNAs) are small RNAs (sRNAs) with approximately 21-24 nucleotides in length. They regulate the expression of target genes through the mechanism of RNA silencing. Conventional isolation and cloning of miRNAs methods are usually technical demanding and inefficient. These limitations include the requirement for high amounts of starting total RNA, inefficient ligation of linkers, high amount of PCR artifacts and bias in the formation of short miRNA-concatamers. Here we describe in detail a method that uses 80 μg of total RNA as the starting material. Enhancement of the ligation of sRNAs and linkers with the use of polyethylene glycol (PEG8000) was described. PCR artifacts from the amplification of reverse-transcribed sRNAs were greatly decreased by using lower concentrations of primers and reducing the number of amplification cycles. Large concatamers with up to 1 kb in size with around 20 sRNAs/concatamer were obtained by using an optimized reaction condition. This protocol provide researchers with a rapid, efficient and cost-effective method for the construction of miRNA profiles from plant tissues containing low amounts of total RNA, such as fruit flesh and senescent leaves.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  6. Mehrnoush A, Mustafa S, Sarker MZ, Yazid AM
    Molecules, 2011 Nov 03;16(11):9245-60.
    PMID: 22051935 DOI: 10.3390/molecules16119245
    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper) leaves. The effect of independent variables, namely temperature (42.5,47.5, X₁), mixing time (2-6 min, X₂), buffer content (0-80 mL, X₃) and buffer pH (4.5-10.5, X₄) on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  7. Wan Ibrahim WA, Hermawan D, Sanagi MM, Aboul-Enein HY
    J Sep Sci, 2009 Feb;32(3):466-71.
    PMID: 19142910 DOI: 10.1002/jssc.200800512
    A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  8. Muniandy S, Qvist R, Zaini A, Chinna K, Ismail IS
    PMID: 16295560
    The concentration of plasma sialic acid was estimated using the modified chemical method and the more sensitive enzymatic method in 20 subjects with impaired glucose tolerance and 20 control subjects. The mean sialic acid concentration values of the control subjects and subjects with impaired glucose tolerance using the enzymatic method were 1.747 +/- 0.047 and 2.583 +/- 0.070 mmole/l and 1.753 +/- 0.067 and 2.591 +/- 1.02 mmole/l for the chemical method. The intra-assay coefficient of variation for the control subjects and for the subjects with impaired glucose tolerance were 1.963% and 1.583%, respectively, for the enzymatic assay and 2.728% and 2.431%, respectively, for the chemical assay. The inter-assay coefficient of variation for the control subjects and for the subjects with impaired glucose tolerance were 2.686% and 2.723% for the enzymatic assay, and 3.819% and 3.95% for the chemical assay. Since the values do not differ significantly, the chemical assay is a cost effective method that can be used in large epidemiological studies.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  9. Nosrati S, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Sep 15;192(3):1283-90.
    PMID: 21752542 DOI: 10.1016/j.jhazmat.2011.06.037
    This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  10. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  11. Hui BY, Raoov M, Zain NNM, Mohamad S, Osman H
    Crit Rev Anal Chem, 2017 Sep 03;47(5):454-467.
    PMID: 28453309 DOI: 10.1080/10408347.2017.1320936
    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  12. Baidurah S, Murugan P, Joyyi L, Fukuda J, Yamada M, Sudesh K, et al.
    J Chromatogr A, 2016 Nov 04;1471:186-191.
    PMID: 27769532 DOI: 10.1016/j.chroma.2016.10.019
    Thermally assisted hydrolysis and methylation-gas chromatography (THM-GC) in the presence of an organic alkali was validated for the compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] accumulated in whole bacterial cells. Recombinant Cupriavidus necator Re2058/pCB113 was grown in a batch fermentation with different concentration of palm oil and fructose in order to control the molar fraction of 3HHx in P(3HB-co-3HHx) produced in the cells. Trace amounts (30μg) of freeze-dried cells were directly subjected to THM-GC in the presence of tetramethylammonium hydroxide (TMAH) at 400°C. The obtained chromatograms clearly showed nine characteristic peaks, attributed to the THM products from 3HB and 3HHx units in the polymer chains, without any appreciable interference by the bacterial matrix components. Based on these peak intensities, the copolymer compositions were determined rapidly without using any cumbersome and lengthy sample pretreatment as in conventional GC method. Moreover, the compositions thus obtained were strongly correlated with those by NMR and conventional GC involving solvent extraction.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  13. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  14. Lai CS, Nair NK, Mansor SM, Olliaro PL, Navaratnam V
    PMID: 17719858
    The combination of two sensitive, selective and reproducible reversed phase liquid chromatographic (RP-HPLC) methods was developed for the determination of artesunate (AS), its active metabolite dihydroartemisinin (DHA) and mefloquine (MQ) in human plasma. Solid phase extraction (SPE) of the plasma samples was carried out on Supelclean LC-18 extraction cartridges. Chromatographic separation of AS, DHA and the internal standard, artemisinin (QHS) was obtained on a Hypersil C4 column with mobile phase consisting of acetonitrile-0.05 M acetic acid adjusted to pH 5.2 with 1.0M NaOH (42:58, v/v) at the flow rate of 1.50 ml/min. The analytes were detected using an electrochemical detector operating in the reductive mode. Chromatography of MQ and the internal standard, chlorpromazine hydrochloride (CPM) was carried out on an Inertsil C8-3 column using methanol-acetonitrile-0.05 M potassium dihydrogen phosphate adjusted to pH 3.9 with 0.5% orthophosphoric acid (50:8:42, v/v/v) at a flow rate of 1.00 ml/min with ultraviolet detection at 284 nm. The mean recoveries of AS and DHA over a concentration range of 30-750 ng/0.5 ml plasma and MQ over a concentration of 75-1500 ng/0.5 ml plasma were above 80% and the accuracy ranged from 91.1 to 103.5%. The within-day coefficients of variation were 1.0-1.4% for AS, 0.4-3.4% for DHA and 0.7-1.5% for MQ. The day-to-day coefficients of variation were 1.3-7.6%, 1.8-7.8% and 2.0-3.4%, respectively. Both the lower limit of quantifications for AS and DHA were at 10 ng/0.5 ml and the lower limit of quantification for MQ was at 25 ng/0.5 ml. The limit of detections were 4 ng/0.5 ml for AS and DHA and 15 ng/0.5 ml for MQ. The method was found to be suitable for use in clinical pharmacological studies.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links