Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al.
    Sci Rep, 2015;5:11421.
    PMID: 26078201 DOI: 10.1038/srep11421
    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
    Matched MeSH terms: Chikungunya virus/genetics
  2. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
    Matched MeSH terms: Chikungunya virus/genetics
  3. Thayan R, Yusof MA, Saat Z, Sekaran SD, Wang SM
    Methods Mol Biol, 2016;1426:11-9.
    PMID: 27233257 DOI: 10.1007/978-1-4939-3618-2_2
    Molecular surveillance of Chikungunya virus (CHIKV) is important as it provides data on the circulating CHIKV genotypes in endemic countries and enabling activation of measures to be taken in the event of a pending outbreak. Molecular surveillance is carried out by first detecting CHIKV in susceptible humans or among field-caught mosquitoes. This is followed by sequencing a selected region of the virus which will provide evidence on the source of the virus and possible association of the virus to increased cases of Chikungunya infections.
    Matched MeSH terms: Chikungunya virus/genetics*
  4. Wang SM, Ali UH, Sekaran SD, Thayan R
    Methods Mol Biol, 2016;1426:105-17.
    PMID: 27233265 DOI: 10.1007/978-1-4939-3618-2_10
    Real-time PCR assay has many advantages over conventional PCR methods, including rapidity, quantitative measurement, low risk of contamination, high sensitivity, high specificity, and ease of standardization (Mackay et al., Nucleic Acids Res 30:1292-1305, 2002). The real-time PCR system relies upon the measurement of a fluorescent reporter during PCR, in which the amount of emitted fluorescence is directly proportional to the amount of the PCR product in a reaction (Gibsons et al., Genome Res 6:995-1001, 1996). Here, we describe the use of SYBR Green I-based and TaqMan(®) real-time reverse transcription polymerase chain reaction (RT-PCR) for the detection and quantification of Chikungunya virus (CHIKV).
    Matched MeSH terms: Chikungunya virus/genetics*
  5. Sam IC, Sulaiman AB
    Med J Malaysia, 2006 Jun;61(2):264-9.
    PMID: 16898330 MyJurnal
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which causes epidemic fever, rash and polyarthralgia in Africa and Asia. Two outbreaks have been reported in Malaysia, in Klang, Selangor (1998) and Bagan Panchor, Perak (2006). It is not known if the outbreaks were caused by the recent introduction of CHIKV, or if the virus was already circulating in Malaysia. Seroprevalence studies from the 1960s suggested previous disease activity in certain parts of the country. In Asia, CHIKV is thought to be transmitted by the same mosquitoes as dengue, Aedes aegypti and Ae. albopictus. Due to similarities in clinical presentation with dengue, limited awareness, and a lack of laboratory diagnostic capability, CHIKV is probably often underdiagnosed or misdiagnosed as dengue. Treatment is supportive. The prognosis is generally good, although some patients experience chronic arthritis. With no vaccine or antiviral available, prevention and control depends on surveillance, early identification of outbreaks, and vector control. CHIKV should be borne in mind in sporadic cases, and in patients epidemiologically linked to ongoing local or international outbreaks or endemic areas.
    Matched MeSH terms: Chikungunya virus/genetics
  6. Wong HV, Vythilingam I, Sulaiman WY, Lulla A, Merits A, Chan YF, et al.
    Am J Trop Med Hyg, 2016 Jan;94(1):182-6.
    PMID: 26598564 DOI: 10.4269/ajtmh.15-0318
    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection.
    Matched MeSH terms: Chikungunya virus/genetics*
  7. Chiam CW, Chan YF, Loong SK, Yong SS, Hooi PS, Sam IC
    Diagn Microbiol Infect Dis, 2013 Oct;77(2):133-7.
    PMID: 23886793 DOI: 10.1016/j.diagmicrobio.2013.06.018
    Quantitative real-time polymerase chain reaction (qRT-PCR) is useful for diagnosis and studying virus replication. We developed positive- and negative-strand qRT-PCR assays to detect nsP3 of chikungunya virus (CHIKV), a positive-strand RNA alphavirus that causes epidemic fever, rash, and arthritis. The positive- and negative-strand qRT-PCR assays had limits of quantification of 1 and 3 log10 RNA copies/reaction, respectively. Compared to a published E1 diagnostic assay using 30 laboratory-confirmed clinical samples, the positive-strand nsP3 qRT-PCR assay had higher R(2) and efficiency and detected more positive samples. Peak viral load of 12.9 log(10) RNA copies/mL was reached on day 2 of illness, and RNA was detectable up to day 9, even in the presence of anti-CHIKV IgM. There was no correlation between viral load and persistent arthralgia. The positive-strand nsP3 assay is suitable for diagnosis, while the negative-strand nsP3 assay, which uses tagged primers to increase specificity, is useful for study of active viral replication kinetics.
    Matched MeSH terms: Chikungunya virus/genetics
  8. Ayu SM, Lai LR, Chan YF, Hatim A, Hairi NN, Ayob A, et al.
    Am J Trop Med Hyg, 2010 Dec;83(6):1245-8.
    PMID: 21118929 DOI: 10.4269/ajtmh.2010.10-0279
    In 2006, an outbreak of Chikungunya virus (CHIKV) of the Asian genotype affected over 200 people in Bagan Panchor village in Malaysia. One year later, a post-outbreak survey was performed to determine attack rate, asymptomatic rate, and post-infection sequelae. Findings were compared with recent CHIKV outbreaks of the Central/East African genotype. A total of 180 residents were interviewed for acute symptoms and post-infection physical quality of life and depressive symptoms. Sera from 72 residents were tested for CHIKV neutralizing antibodies. The estimated attack rate was 55.6%, and 17.5% of infected residents were asymptomatic. Arthralgia was reported up to 3 months after infection, but there were no reports of long-term functional dependence or depression. Symptomatic and seropositive residents were significantly more likely to live in the area with the most dense housing and commercial activities. CHIKV had a high attack rate and considerable clinical impact during the Bagan Panchor outbreak.
    Matched MeSH terms: Chikungunya virus/genetics
  9. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
    Matched MeSH terms: Chikungunya virus/genetics
  10. Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, et al.
    J Gen Virol, 2019 11;100(11):1541-1553.
    PMID: 31613205 DOI: 10.1099/jgv.0.001338
    Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
    Matched MeSH terms: Chikungunya virus/genetics
  11. AbuBakar S, Sam IC, Wong PF, MatRahim N, Hooi PS, Roslan N
    Emerg Infect Dis, 2007 Jan;13(1):147-9.
    PMID: 17370532
    Chikungunya virus infection recently reemerged in Malaysia after 7 years of nondetection. Genomic sequences of recovered isolates were highly similar to those of Malaysian isolates from the 1998 outbreak. The reemergence of the infection is not part of the epidemics in other Indian Ocean countries but raises the possibility that chikungunya virus is endemic in Malaysia.
    Matched MeSH terms: Chikungunya virus/genetics
  12. Rougeron V, Sam IC, Caron M, Nkoghe D, Leroy E, Roques P
    J Clin Virol, 2015 Mar;64:144-52.
    PMID: 25453326 DOI: 10.1016/j.jcv.2014.08.032
    Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family that causes chronic and incapacitating arthralgia in human populations. Since its discovery in 1952, CHIKV was responsible for sporadic and infrequent outbreaks. However, since 2005, global Chikungunya outbreaks have occurred, inducing some fatalities and associated with severe and chronic morbidity. Chikungunya is thus considered as an important re-emerging public health problem in both tropical and temperate countries, where the distribution of the Aedes mosquito vectors continues to expand. This review highlights the most recent advances in our knowledge and understanding of the epidemiology, biology, treatment and vaccination strategies of CHIKV.
    Matched MeSH terms: Chikungunya virus/genetics
  13. Pongsiri P, Auksornkitti V, Theamboonlers A, Luplertlop N, Rianthavorn P, Poovorawan Y
    Trop Biomed, 2010 Aug;27(2):167-76.
    PMID: 20962712 MyJurnal
    The resurgence of Chikungunya virus (CHIKV) in the southern, northeastern and northern parts of Thailand, inflicting approximately 46,000 reported cases since October 2008 until December 2009, has raised public health concerns. In the present study, we characterized nearly complete genome sequences of four CHIKV isolates obtained from 2008 to 2009 outbreaks in Thailand. Phylogenetic analysis was performed to determine the relationships of the study viruses with previously reported isolates. Results showed that 2008-2009 Thailand isolates belonged to the East, Central and South African genotype and were most closely related to isolates detected in Malaysia and Singapore in 2008. This was in contrast to isolates from all previous outbreaks in Thailand which were caused by an Asian genotype. We describe several novel mutations in Thailand isolates that warrants further investigation on characterization of CHIKV from different parts of the country to better understand the molecular epidemiology of Chikungunya fever outbreaks in Thailand.
    Matched MeSH terms: Chikungunya virus/genetics*
  14. Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, et al.
    J Gen Virol, 2010 Apr;91(Pt 4):1067-76.
    PMID: 19955565 DOI: 10.1099/vir.0.015743-0
    Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
    Matched MeSH terms: Chikungunya virus/genetics
  15. Tun MM, Thant KZ, Inoue S, Nabeshima T, Aoki K, Kyaw AK, et al.
    Emerg Infect Dis, 2014 Aug;20(8):1378-81.
    PMID: 25062511 DOI: 10.3201/eid2008.131431
    In 2010, chikungunya virus of the East Central South African genotype was isolated from 4 children in Myanmyar who had dengue-like symptoms. Phylogenetic analysis of the E1 gene revealed that the isolates were closely related to isolates from China, Thailand, and Malaysia that harbor the A226V mutation in this gene.
    Matched MeSH terms: Chikungunya virus/genetics*
  16. Rohani A, Potiwat R, Zamree I, Lee HL
    PMID: 19842428
    In this study, artificial membrane feeding technique was used to orally feed Aedes aegypti with dengue and chikungunya viruses. Virus detection was carried out by reverse transcriptase polymerase chain reaction. The study did not detect dual infection of Ae. aegypti with dengue and chikungunya virus from the same pool or from individual mosquitoes. Oral receptivity of Ae. aegypti to chikungunya virus was higher than that of dengue virus.
    Matched MeSH terms: Chikungunya virus/genetics
  17. Rohani A, Yulfi H, Zamree I, Lee HL
    Trop Biomed, 2005 Dec;22(2):149-54.
    PMID: 16883281 MyJurnal
    A study of chikungunya virus was carried out to establish Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) as a rapid detection technique of the virus. The susceptibility of lab-colonized Aedes aegypti to chikungunya virus was also determined. Artificial membrane feeding technique was used to orally feed the mosquitoes with a human isolate of chikungunya virus. A total of 100 fully engorged female Ae. aegypti were obtained and maintained for 7 days. Seventy of them survived and then pooled at 10 individuals per pool. Total RNA was extracted from the samples and RT-PCR amplifications were carried out. Five out of 7 pools showed positive PCR band at 350-bp, indicating Ae. aegypti is a potential vector of chikungunya virus. The minimum infection rate (MIR) was 71% within these laboratory colonies. RT-PCR is a sensitive technique that is useful in detecting infected mosquitoes in epidemic areas. This technique can de used as a rapid detection method and provide an early virologic surveillance systems of chikungunya virus infected mosquitoes.
    Matched MeSH terms: Chikungunya virus/genetics
  18. Rozilawati H, Faudzi AY, Rahidah AA, Azlina AH, Abdullah AG, Amal NM, et al.
    Indian J Med Res, 2011 Jun;133:670-3.
    PMID: 21727669
    Chikungunya infection has become a public health threat in Malaysia since the 2008 nationwide outbreaks. Aedes albopictus Skuse has been identified as the chikungunya vector in Johor State during the outbreaks. In 2009, several outbreaks had been reported in the State of Kelantan. Entomological studies were conducted in Kelantan in four districts, namely Jeli, Tumpat, Pasir Mas and Tanah Merah to identify the vector responsible for the virus transmission.
    Matched MeSH terms: Chikungunya virus/genetics
  19. Hasebe F, Parquet MC, Pandey BD, Mathenge EG, Morita K, Balasubramaniam V, et al.
    J Med Virol, 2002 Jul;67(3):370-4.
    PMID: 12116030
    A reverse transcription-polymerase chain reaction (RT-PCR) was developed for the detection of Chikungunya virus infection. Based on the nonstructural protein 1 (nsP1) and glycoprotein E1 (E1) genes of Chikungunya, two primer sets were designed. Total RNA were extracted from the cell culture fluid of Aedes albopictus C6/36 cells inoculated with the S27 prototype virus, isolated in Tanzania in 1953, and the Malaysian strains (MALh0198, MALh0298, and MALh0398), isolated in Malaysia in 1998. For both sets of RNA samples, the expected 354- and 294-base pair (bp) cDNA fragments were amplified effectively from the nsP1 and E1 genes, respectively. Phylogenetic analysis was conducted for the Malaysian strain and other virus strains isolated from different regions in the world endemic for Chikungunya, using partial E1 gene sequence data. The Malaysian strains isolated during the epidemics of 1998 fell into a cluster with other members of the Asian genotype.
    Matched MeSH terms: Chikungunya virus/genetics
  20. Chem YK, Zainah S, Berendam SJ, Rogayah TA, Khairul AH, Chua KB
    Med J Malaysia, 2010 Mar;65(1):31-5.
    PMID: 21265245 MyJurnal
    Malaysia experienced the first outbreak of chikungunya (CHIK) in Klang in late 1998 due to CHIK virus of Asian genotype. The CHIK virus of Asian genotype reemerged causing outbreak in Bangan Panchor, Perak in March 2006. CHIK virus of Central/East African genotype was first detected from a patient who returned from India in August 2006. In December 2006, CHIK virus of Central/East African genotype was re-introduced into Malaysia from India and caused an outbreak in Kinta district, Perak but was successfully controlled following an early detection and institution of intensive vector control measures. In late April 2008, CHIK virus of Central/East African genotype was laboratory confirmed as the cause of CHIK outbreak in Johore which spread to other parts of Malaysia by August 2008. Phylogenetic analysis based on the 254-bp fragment of the virus envelope protein gene as the genetic marker showed that three different strains of CHIK virus of Central/East African genotype were introduced into Malaysia on three separate occasions from 2006 to 2008. The strain that was introduced into Johor state was responsible for its subsequent spread to other parts of Malaysia, inclusive of Sarawak.
    Matched MeSH terms: Chikungunya virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links