Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Zakka WP, Lim NHAS, Khun MC, Samadi M, Aluko O, Odubela C
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25129-25146.
    PMID: 38468004 DOI: 10.1007/s11356-024-32786-0
    Every structure might be exposed to fire at some point in its lifecycle. The ability of geopolymer composites to withstand the effects of fire damage early before it is put out is of great importance. This study examined the effects of fire on geopolymer composite samples made with high-calcium fly ash and alkaline solution synthesised from waste banana peduncle and silica fume. A ratio of 0.30, 0.35, and 0.4 was used in the study for the alkaline solution to fly ash. Also used were ratios of 0.5, 0.75, and 1 for silica oxide (silica fume) to potassium hydroxide ratio. The strength loss, residual compressive strength, percentage strength loss, relative residual compressive strength, ultrasonic pulse velocity, and microstructural properties of the thirteen mortar mixes were measured after exposure to temperatures of 200, 400, 600, and 800 °C for 1 h, respectively. The results reveal that geopolymer samples exposed to elevated temperatures showed great dimensional stability with no visible surface cracks. There was a colour transition from dark grey to whitish brown for the green geopolymer mortar and brown to whitish brown for the control sample. As the temperature rose, weight loss became more pronounced, with 800 °C producing the most significant weight reduction. The optimum mixes had a residual compressive strength of 25.02 MPa after being exposed to 200 °C, 18.72 MPa after being exposed to 400 °C, 14.04 MPa after being exposed to 600 °C, and 7.41 MPa after being exposed to 800 °C. The control had a residual compressive strength of 8.45 MPa after being exposed to 200 °C, 6.67 MPa after being exposed to 400 °C, 3.16 MPa after being exposed to 600 °C, and 2.23 MPa after being exposed to 800 °C. The relative residual compressive strength decreases for green geopolymer mortar are most significant at 600 and 800 °C, with an average decrease of 0.47 and 0.30, respectively. The microstructure of the samples revealed various phase changes and new product formations as the temperature increased.
    Matched MeSH terms: Coal Ash*
  2. Yadav VK, Yadav KK, Alam J, Cabral-Pinto MM, Gnanamoorthy G, Alhoshan M, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71766-71778.
    PMID: 34523099 DOI: 10.1007/s11356-021-15009-8
    Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.
    Matched MeSH terms: Coal Ash/chemistry
  3. Bheel N, Aluko OG, Khoso AR
    Environ Sci Pollut Res Int, 2022 Apr;29(18):27399-27410.
    PMID: 34982384 DOI: 10.1007/s11356-021-18455-6
    The quest for eco-sustainable binders like agro-wastes in concrete to reduce the carbon footprint caused by cement production has been ongoing among researchers recently. The application of agro-waste-based cementitious materials in binary concrete has been said to improve concrete performance lately. Coconut and groundnut shells are available in abundant quantities and disposed of as waste in many world regions. Therefore, the use of coconut shell ash (CSA) and groundnut shell ash (GSA) in a ternary blend provides synergistic benefits with Portland cement (PC) and may be sustainably utilized in concrete as ternary cementitious material (TCM). Therefore, this study presents concrete performance with CSA and GSA in a grade 30 ternary concrete. Two hundred ten numbers of standard concrete samples were cast for checking the fresh and mechanical properties of concrete at curing ages of 7, 28, and 90 days. After 28-day curing, the experimental results show an increment in compressive, tensile, and flexural strength by 11.62%, 8.39%, and 9.46% at 10% TCM cement replacement, respectively. The concrete density and permeability coefficient reduce as TCM's content increases. The modulus of elasticity after 90 days improved with the addition of TCM. The concrete's sustainability assessment indicated that the emitted carbon for concrete decreased by around 16% using 20% TCM in concrete. However, the workability of fresh concrete declines as TCM content increases.
    Matched MeSH terms: Coal Ash*
  4. Ren P, Ling TC, Mo KH
    J Hazard Mater, 2022 02 15;424(Pt B):127457.
    PMID: 34653858 DOI: 10.1016/j.jhazmat.2021.127457
    In this study, municipal solid waste incineration fly ash (MSWIFA) was pretreated with CO2 via slurry carbonation (SC) and dry carbonation coupled with subsequent water washing (DCW). Both the treated MSWIFAs were then used as cement replacement in cement pastes by weight of 10%, 20% and 30% to investigate the influence on hydration mechanisms, physico-mechanical characteristics and leaching properties. The results showed that carbonates formed on the surface of SC-MSWIFA particles were finer (primarily 20-50 nm calcite) than those from the corresponding DCW-MSWIFA (mostly 130-200 nm vaterite). Hence, SC-MSWIFA blended cement pastes led to shorter setting time and higher early compressive strength than the DCW-MSWIFA pastes. In contrast, the presence of vaterite-rich DCW-MSWIFA in the blended cement pastes could accelerate the cement hydration after 24 h. Both the CO2-pretreated MSWIFA can replace cement up to 30% without sacrificing the long-term strength and mechanical properties of cement pastes, demonstrating excellent performance as a supplementary cementitious material. Moreover, volume stability in terms of expansion and lead leaching of CO2-pretreated MSWIFA cement pastes were far below the regulatory limits.
    Matched MeSH terms: Coal Ash
  5. Bheel N, Sohu S, Jhatial AA, Memon NA, Kumar A
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5207-5223.
    PMID: 34420161 DOI: 10.1007/s11356-021-16034-3
    This experimental research was conducted to study the combined effect of agricultural by-product wastes on the properties of concrete. The coconut shell ash (CSA) was utilized to substitute cement content ranging from 0 to 20% by weight of total binder and sugarcane bagasse ash (SCBA) to substitute fine aggregates (FA) ranging from 0 to 40% by weight of total FA. In this regard, a total of 300 concrete specimens (cylinders and cubes) were prepared using 1:1.5:3 mix proportions with a 0.52 water-binder ratio. The study investigated the workability, density, permeability, and mechanical properties in terms of compressive and splitting tensile strengths. Additionally, the total embodied carbon for all mix proportions was calculated. It was observed that with an increase in CSA and SCBA contents, the workability, density, and permeability reduced significantly. Due to CSA and SCBA being pozzolanic materials, a gain in compressive and splitting tensile strengths was observed for certain concrete mixes, after which the strength decreased. The increase in embodied carbon of SCBA increased the total embodied carbon of concrete; however, it can be said that C15S40 which consists of 15% CSA and 40% SCBA is the optimum mix that achieved 28.75 MPa and 3.05 MPa compressive and tensile strength, respectively, a reduction of 4% total embodied carbon.
    Matched MeSH terms: Coal Ash
  6. Jhatial AA, Goh WI, Mastoi AK, Traore AF, Oad M
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2985-3007.
    PMID: 34383212 DOI: 10.1007/s11356-021-15076-x
    Rapid urbanization and 'concretization' have increased the use of concrete as the preferred building material. However, the production of cement and other concrete-related activities, contribute significantly to both the carbon dioxide emissions and climate change. Agro-industrial wastes such as Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) have been utilized in concrete as supplementary cementitious materials, to reduce the cement content, in order to minimize the carbon footprint and the environmental pollution associated with the dumping of waste. Both POFA and ESP have been utilized in ternary binder foamed concrete; however, higher content of cement replacement tends to reduce the concrete's strength significantly. Therefore, this research was conducted to study the influence of ternary binder foamed concrete, incorporating 30% POFA and 5-15% ESP by weight of the total binder, when reinforced with polypropylene (PP) fibres. Based on the results, the ternary binder foamed concrete showed better strength than the control foamed concrete due to the pozzolanic reaction and the addition of PP fibres slightly improved the strength. Furthermore, ternary binder foamed concrete can reduce up to 33.79% of the total CO2 emissions. In terms of cost, all ternary binder foamed concrete mixes reduced the overall cost of the mix. The lowest cost per 1 MPa was achieved by ternary binder foamed concrete mix which incorporated 30% POFA, 5% ESP and 0.20% PP fibres. However, the optimum S5 ternary binder foamed concrete mix, which incorporated 30% POFA, 10% ESP and 0.20% PP fibres, exhibited a cost of $3.74 per 1 MPa strength, which was $1.1 lower than the control foamed concrete. PP reinforced ternary binder foamed concrete is an eco-efficient and cost-effective concrete that can be used in numerous civil engineering applications, mitigating the environmental and the emissions generated by agro-industrial waste.
    Matched MeSH terms: Coal Ash*
  7. Channa SH, Mangi SA, Bheel N, Soomro FA, Khahro SH
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3555-3564.
    PMID: 34387820 DOI: 10.1007/s11356-021-15877-0
    Globally, concrete is widely implemented as a construction material and is progressively being utilized because of growth in urbanization. However, limited resources and gradual depravity of the environment are forcing the research community to obtain alternative materials from large amounts of agro-industrial wastes as a partial replacement for ordinary cement. Cement is a main binding resource in concrete production. To reduce environmental problems associated with waste, this study considered the recycling of agro-industrial wastes, such as sugarcane bagasse ash (SCBA), rice husk ash (RHA), and others, into cement, and to finally bring sustainable and environmental-friendly concrete. This study considered 5%, 10%, and 15% of SBCA and RHA individually to replace ordinary Portland cement (OPC) by weight method then combined both ashes as 10%, 20%, and 30% to replace OPC to produce sustainable concrete. It was experimentally declared that the strength performance of concrete was reduced while utilizing SCBA and RHA individually and combined as supplementary cementitious material (SCM) at 7, 28, 56, and 90 days, respectively. Moreover, the initial and final setting time is increased as the quantity of replacement level of OPC with SCBA and RHA separates and together as SCM in the mixture. Based on experimental findings, it was concluded that the use of 5% of SCBA and 5% of RHA as cement replacement material individually or combined in concrete could provide appropriate results for structural applications in concrete.
    Matched MeSH terms: Coal Ash
  8. Kumar A, Bheel N, Ahmed I, Rizvi SH, Kumar R, Jhatial AA
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1210-1222.
    PMID: 34350574 DOI: 10.1007/s11356-021-15734-0
    The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.
    Matched MeSH terms: Coal Ash*
  9. Bheel N, Ali MOA, Tafsirojjaman, Khahro SH, Keerio MA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5224-5239.
    PMID: 34417691 DOI: 10.1007/s11356-021-15954-4
    In recent years, the research direction is shifted toward introducing new supplementary cementitious materials (SCM) in lieu of in place of Portland cement (PC) in concrete as its production emits a lot of toxic gases in the atmosphere which causes environmental pollution and greenhouse gases. SCM such as sugarcane bagasse ash (SCBA), metakaolin (MK), and millet husk ash (MHA) are available in abundant quantities and considered as waste products. The primary aim of this experimental study is to investigate the effect of SCBA, MK, and MHA on the fresh and mechanical properties of concrete mixed which contributes to sustainable development. A total of 228 concrete specimens were prepared with targeted strength of 25MPa at 0.52 water-cement ratio and cured at 28 days. It is found that the compressive strength and split tensile strength were enhanced by 17% and 14.28%, respectively, at SCBA4MK4MHA4 (88% PC, 4% SCBA, 4% MK, and 4% MHA) as ternary cementitious material (TCM) in concrete after 28 days. Moreover, the permeability and density of concrete are found to be reduced when SCBA, MK, and MHA are used separately and combined as TCM increases in concrete at 28 days, respectively. The results showed that the workability of the fresh concrete was decreased with the increase of the percentage of SCBA, MK, and MHA separately and together as TCM in concrete.
    Matched MeSH terms: Coal Ash
  10. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Coal Ash
  11. Kanakaraju D, Jasni MAA, Pace A, Ya MH
    Environ Sci Pollut Res Int, 2021 Dec;28(48):68834-68845.
    PMID: 34282548 DOI: 10.1007/s11356-021-15440-x
    The performance of Cu/TiO2/FA composite, a hybrid adsorbent-photocatalyst consisting of copper-doped titania particles supported on fly ash, was optimized, under visible light irradiation, for the removal of the model dye pollutant methyl orange (MO) by using a response surface methodology and Box-Behnken experimental design. Three independent variables were considered for the optimization study: catalyst/solvent dosage (0.5 - 2.0 g/L), irradiation time (30-120 min), and the initial concentration (5- 25 ppm) of the dye. A 99.91% rate of removal was achieved using 2 g/L dosage, 5 ppm initial concentration, and 100 min of irradiation time as the optimal operating conditions. The recorded trends support the hypothesis of a combined and synergic adsorption-photocatalytic degradation process which fully exploits the "capture and destroy" approach for pollutant removal.
    Matched MeSH terms: Coal Ash*
  12. Hermawan AA, Teh KL, Talei A, Chua LHC
    J Environ Manage, 2021 Nov 01;297:113298.
    PMID: 34280854 DOI: 10.1016/j.jenvman.2021.113298
    The discharge of high levels of heavy metals into the environment is of concern due to its toxicity to aquatic life and potential human health impacts. Biofiltration systems have been used in urban environments to address nutrient contamination, but there is also evidence that such systems can be effective in reducing heavy metals concentration in stormwater. However, the accumulation pattern of heavy metals and lifespan of such systems, which are important in engineering design, have not been thoroughly explored. This study investigated the accumulation patterns of lead (Pb), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe), which are common in urban runoff, in non-vegetated filtration columns using three different types of filter media, namely sand (S), and mixtures of sand with fly ash (sand-fly ash mix, SF), and with zeolite (sand-zeolite mix, SZ). The columns were assessed in terms of infiltration rate, the mass of heavy metals accumulation at different depths, and formation of crust layer (schmutzdecke) at the surface. The results show that most of the heavy metals accumulated at the top 5-10 cm of the filter media. However, Zn was found adsorbed to a depth of 15 cm in S and SZ columns, while Mn and Fe were present in column S throughout the entire 30 cm depth of the filter media. The presence especially of Zn, Mn, and Fe in the deeper portions of the filter media before the top 5 cm layer reached its maximum adsorption capacity, hints that transport to the deeper layers is not necessarily dependent on saturation of the upper layers for these heavy metals. SF accumulated heavy metals most at the top 5 cm of the filter media layer, and retained twice the mass of heavy metals in the crust layer, compared to S and SZ columns. SF also yielded the lowest value of infiltration rate of 31 mm/h. Considering both metals accumulation and clogging potential of the filter media, the periodic maintenance of these systems is suggested to be approximately between 1.5 and 3 years.
    Matched MeSH terms: Coal Ash
  13. Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA
    Int J Biol Macromol, 2021 Oct 31;189:464-476.
    PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160
    A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
    Matched MeSH terms: Coal Ash/chemistry*
  14. Kumar R, Shafiq N, Kumar A, Jhatial AA
    Environ Sci Pollut Res Int, 2021 Sep;28(35):49074-49088.
    PMID: 33928510 DOI: 10.1007/s11356-021-13918-2
    Research for alternative binders has become a necessity due to cement's embodied carbon, climate change, and depletion of natural resources. These binders could potentially reduce our reliance on cement as the sole binder for concrete while simultaneously enhancing the functional characteristics of concrete. Theoretically, the use of finer particles in the cement matrix densifies the pore structure of concrete and results in improved properties. To validate this hypothesis, current research was designed to investigate how the value-added benefits of nano-silica (NS) and metakaolin (MK) in fly ash (FA)-blended cement affect the mechanical and durability characteristics of concrete when used as ternary and quaternary blends. Additionally, the cost-benefit analysis and environmental impact assessment were conducted. It was observed that the synergy of MK and NS used in FA-blended cement had a greater impact on enhancing the functional characteristics of concrete, while 10% MK as ordinary Portland cement (OPC) replacement and 1% NS as an additive in FA-blended OPC concrete was the optimum combination which achieved 94-MPa compressive strength at the age of 91 days and showed more than 25% increment in the flexural and splitting tensile strengths compared to the control mix (MS00). The ultrasonic pulse velocity and dynamic modulus of elasticity were significantly improved, while a significant reduction in chloride migration of 50% was observed. In terms of environmental impact, MS100 (30% FA and 10% MK) exhibited the least embodied CO2 emissions of 319.89 kgCO2/m3, while the highest eco-strength efficiency of 0.268 MPa/kgCO2·m-3 with respect to 28-day compressive strength was exhibited by MS101. In terms of cost-benefit, MS00 was determined the cheapest, while the addition of MK and NS increased the cost. The lowest cost of producing 1 MPa was exhibited by MS01 with a merely 0.04-$/MPa/m3 reduction compared to MS00.
    Matched MeSH terms: Coal Ash*
  15. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, et al.
    3 Biotech, 2021 May;11(5):205.
    PMID: 33868892 DOI: 10.1007/s13205-021-02740-9
    This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
    Matched MeSH terms: Coal Ash
  16. Zulkifli NNI, Abdullah MMAB, Przybył A, Pietrusiewicz P, Salleh MAAM, Aziz IH, et al.
    Materials (Basel), 2021 Apr 26;14(9).
    PMID: 33925777 DOI: 10.3390/ma14092213
    This paper clarified the microstructural element distribution and electrical conductivity changes of kaolin, fly ash, and slag geopolymer at 900 °C. The surface microstructure analysis showed the development in surface densification within the geopolymer when in contact with sintering temperature. It was found that the electrical conductivity was majorly influenced by the existence of the crystalline phase within the geopolymer sample. The highest electrical conductivity (8.3 × 10-4 Ωm-1) was delivered by slag geopolymer due to the crystalline mineral of gehlenite (3Ca2Al2SiO7). Using synchrotron radiation X-ray fluorescence, the high concentration Ca boundaries revealed the appearance of gehlenite crystallisation, which was believed to contribute to development of denser microstructure and electrical conductivity.
    Matched MeSH terms: Coal Ash
  17. Zulkifly K, Cheng-Yong H, Yun-Ming L, Bayuaji R, Abdullah MMAB, Ahmad SB, et al.
    Materials (Basel), 2021 Apr 15;14(8).
    PMID: 33920865 DOI: 10.3390/ma14081973
    Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0-3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0-0.1) fire propagation index.
    Matched MeSH terms: Coal Ash
  18. Ramjan S, Tangchirapat W, Jaturapitakkul C, Chee Ban C, Jitsangiam P, Suwan T
    Materials (Basel), 2021 Mar 20;14(6).
    PMID: 33804759 DOI: 10.3390/ma14061528
    The alkali-silica reaction (ASR) is an important consideration in ensuring the long-term durability of concrete materials, especially for those containing reactive aggregates. Although fly ash (FA) has proven to be useful in preventing ASR expansion, the filler effect and the effect of FA fineness on ASR expansion are not well defined in the present literature. Hence, this study aimed to examine the effects of the filler and fineness of FA on ASR mortar expansion. FAs with two different finenesses were used to substitute ordinary Portland cement (OPC) at 20% by weight of binder. River sand (RS) with the same fineness as the FA was also used to replace OPC at the same rate as FA. The replacement of OPC with RS (an inert material) was carried out to observe the filler effect of FA on ASR. The results showed that FA and RS provided lower ASR expansions compared with the control mortar. Fine and coarse fly ashes in this study had almost the same effectiveness in mitigating the ASR expansion of the mortars. For the filler effect, smaller particles of RS had more influence on the ASR reduction than RS with coarser particles. A significant mitigation of the ASR expansion was obtained by decreasing the OPC content in the mortar mixture through its partial substitution with FA and RS.
    Matched MeSH terms: Coal Ash
  19. Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803313 DOI: 10.3390/ma14051310
    Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.
    Matched MeSH terms: Coal Ash
  20. Abdullah A, Hussin K, Abdullah MMAB, Yahya Z, Sochacki W, Razak RA, et al.
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673522 DOI: 10.3390/ma14051111
    Aggregates can be categorized into natural and artificial aggregates. Preserving natural resources is crucial to ensuring the constant supply of natural aggregates. In order to preserve these natural resources, the production of artificial aggregates is beginning to gain the attention of researchers worldwide. One of the methods involves using geopolymer technology. On this basis, this current research focuses on the inter-particle effect on the properties of fly ash geopolymer aggregates with different molarities of sodium hydroxide (NaOH). The effects of synthesis parameters (6, 8, 10, 12, and 14 M) on the mechanical and microstructural properties of the fly ash geopolymer aggregate were studied. The fly ash geopolymer aggregate was palletized manually by using a hand to form a sphere-shaped aggregate where the ratio of NaOH/Na2SiO3 used was constant at 2.5. The results indicated that the NaOH molarity has a significant effect on the impact strength of a fly ash geopolymer aggregate. The highest aggregate impact value (AIV) was obtained for samples with 6 M NaOH molarity (26.95%), indicating the lowest strength among other molarities studied and the lowest density of 2150 kg/m3. The low concentration of sodium hydroxide in the alkali activator solution resulted in the dissolution of fly ash being limited; thus, the inter-particle volume cannot be fully filled by the precipitated gels.
    Matched MeSH terms: Coal Ash
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links