Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Meramat A, Rajab NF, Shahar S, Sharif RA
    J Nutr Health Aging, 2017;21(5):539-545.
    PMID: 28448084 DOI: 10.1007/s12603-016-0759-1
    BACKGROUND: A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage.

    METHOD: Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels.

    RESULTS: A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05).

    CONCLUSION: High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.

    Matched MeSH terms: Cognition/drug effects*
  2. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Cognition/drug effects
  3. Wajs E, Aluisio L, Holder R, Daly EJ, Lane R, Lim P, et al.
    J Clin Psychiatry, 2020 04 28;81(3).
    PMID: 32316080 DOI: 10.4088/JCP.19m12891
    OBJECTIVE: To evaluate long-term safety and efficacy of esketamine nasal spray plus a new oral antidepressant (OAD) in patients with treatment-resistant depression (TRD).

    METHODS: This phase 3, open-label, multicenter, long-term (up to 1 year) study was conducted between October 2015 and October 2017. Patients (≥ 18 years) with TRD (DSM-5 diagnosis of major depressive disorder and nonresponse to ≥ 2 OAD treatments) were enrolled directly or transferred from a short-term study (patients aged ≥ 65 years). Esketamine nasal spray (28-mg, 56-mg, or 84-mg) plus new OAD was administered twice a week in a 4-week induction (IND) phase and weekly or every-other-week for patients who were responders and entered a 48-week optimization/maintenance (OP/MAINT) phase.

    RESULTS: Of 802 enrolled patients, 86.2% were direct-entry and 13.8% were transferred-entry; 580 (74.5%) of 779 patients who entered the IND phase completed the phase, and 150 (24.9%) of 603 who entered the OP/MAINT phase completed the phase. Common treatment-emergent adverse events (TEAEs) were dizziness (32.9%), dissociation (27.6%), nausea (25.1%), and headache (24.9%). Seventy-six patients (9.5%) discontinued esketamine due to TEAEs. Fifty-five patients (6.9%) experienced serious TEAEs. Most TEAEs occurred on dosing days, were mild or moderate in severity, and resolved on the same day. Two deaths were reported; neither was considered related to esketamine. Cognitive performance generally either improved or remained stable postbaseline. There was no case of interstitial cystitis or respiratory depression. Treatment-emergent dissociative symptoms were transient and generally resolved within 1.5 hours postdose. Montgomery-Åsberg Depression Rating Scale total score decreased during the IND phase, and this reduction persisted during the OP/MAINT phase (mean [SD] change from baseline of respective phase to endpoint: IND, -16.4 [8.76]; OP/MAINT, 0.3 [8.12]).

    CONCLUSIONS: Long-term esketamine nasal spray plus new OAD therapy had a manageable safety profile, and improvements in depression appeared to be sustained in patients with TRD.

    TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02497287.

    Matched MeSH terms: Cognition/drug effects
  4. Puttarak P, Dilokthornsakul P, Saokaew S, Dhippayom T, Kongkaew C, Sruamsiri R, et al.
    Sci Rep, 2017 09 06;7(1):10646.
    PMID: 28878245 DOI: 10.1038/s41598-017-09823-9
    Centella asiatica (L.) Urb. has been used as an herbal brain tonic for mental disorders and enhancing memory, but no review of the overall evidence of C. asiatica and cognitive function has been conducted. This study aims to determine the effects of C. asiatica on cognitive function and its related properties. The current systematic review includes five randomized controlled trials (RCTs) conducted to determine the effect of C. asiatica alone and six RCTs conducted to determine the effect of C. asiatica-containing products. Meta-analysis indicated that there are no significant differences in all cognitive function domains of C. asiatica when compared to placebo. However, it could improve mood by increasing alert scores [SMD: 0.71 (95% CI; 0.01 to 1.41); I2 = 30.5%] and decreasing anger scores at 1 hour after treatment [SMD: -0.81 (95%CI; -1.51 to -0.09); I2 = 36.6%]. None of the studies reported adverse effects of C. asiatica. In conclusion, there is not strong evidence to support the use of C. asiatica for cognitive function improvement in each cognitive domain. C. asiatica could improve alertness and relieve anger. However, some limitations should be aware including dose regimen, plant preparation, standardization, and product variation. Future well-designed clinical trials using suitable doses of standardized C. asiatica are still needed.
    Matched MeSH terms: Cognition/drug effects*
  5. Lee LK, Shahar S, Chin AV, Yusoff NA
    Psychopharmacology (Berl), 2013 Feb;225(3):605-12.
    PMID: 22932777 DOI: 10.1007/s00213-012-2848-0
    RATIONALE: Epidemiological studies have suggested a beneficial effect of fish oil supplementation in halting the initial progression of Alzheimer's disease. However, it remains unclear whether fish oil affects cognitive function in older people with mild cognitive impairment (MCI).

    OBJECTIVES: This study investigated the effects of fish oil supplementation on cognitive function in elderly person with MCI.

    METHODS: This was a 12-month, randomised, double-blind, placebo-controlled study using fish oil supplementation with concentrated docosahexaenoic acid (DHA). Thirty six low-socioeconomic-status elderly subjects with MCI were randomly assigned to receive either concentrated DHA fish oil (n = 18) or placebo (n = 18) capsules. The changes of memory, psychomotor speed, executive function and attention, and visual-constructive skills were assessed using cognitive tests. Secondary outcomes were safety and tolerability of the DHA concentrate.

    RESULTS: The fish oil group showed significant improvement in short-term and working memory (F = 9.890; ηp (2) = 0.254; p 

    Matched MeSH terms: Cognition/drug effects
  6. Mohamed AD, Lewis CR
    PLoS One, 2014;9(11):e110639.
    PMID: 25391155 DOI: 10.1371/journal.pone.0110639
    BACKGROUND: Modafinil is a medication licensed for the treatment of narcolepsy. However, it has been reported that healthy individuals without wakefulness disorders are using modafinil off-label to enhance cognitive functioning. Although some studies have reported that modafinil improves cognitive task performance in healthy volunteers, numerous other studies have failed to detect cognitive enhancing effects of modafinil on several well-established neuropsychological tasks. Interestingly, several clinical and preclinical studies have found that improved cognitive task performance by modafinil is accompanied by slower response times. This observation raises the question as to whether this slowing of response time in healthy volunteers is a necessary and sufficient condition for cognitive enhancement with modafinil. The aim of the current experiment was to explore this question by investigating the effects of modafinil on the Hayling Sentence Completion Test (HSCT).

    METHODOLOGY: Sixty-four healthy volunteers received either a single dose (200 mg) of modafinil (n = 32) or placebo (n = 32) in a randomized, double-blind, placebo-controlled, parallel group study in which the principal outcome measures were response latencies on the response initiation and response inhibition sections of the HSCT.

    PRINCIPAL FINDINGS: Participants dosed with modafinil had significantly longer mean response latencies on the HSCT for both the response initiation and response inhibition compared to participants dosed with placebo. However, participants in both groups made a similar number of errors on each of these measures, indicating that modafinil did not enhance the accuracy of performance of the task relative to placebo.

    CONCLUSIONS: This study demonstrated that administration of single 200 mg doses of modafinil to healthy individuals increased the latency of responses in the performance of the HSCT, a task that is highly sensitive to prefrontal executive function, without enhancing accuracy of performance. This finding may provide important clues to defining the limitations of modafinil as a putative cognitive enhancer.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT02051153.

    Matched MeSH terms: Cognition/drug effects*
  7. Ong Lai Teik D, Lee XS, Lim CJ, Low CM, Muslima M, Aquili L
    PLoS One, 2016;11(3):e0150447.
    PMID: 26938637 DOI: 10.1371/journal.pone.0150447
    BACKGROUND: There is some evidence to suggest that ginseng and Ginkgo biloba can improve cognitive performance, however, very little is known about the mechanisms associated with such improvement. Here, we tested whether cardiovascular reactivity to a task is associated with cognitive improvement.

    METHODOLOGY/PRINCIPAL FINDINGS: Using a double-blind, placebo controlled, crossover design, participants (N = 24) received two doses of Panax Ginseng (500, 1000 mg) or Ginkgo Biloba (120, 240 mg) (N = 24), and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks) in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo) increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline) to cognitive tasks. This effect (reversal) was most notable after those tasks (Stroop and Iowa) that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo) blunted response (i.e. decrease or no change from baseline) to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo.

    CONCLUSIONS/SIGNIFICANCE: These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT02386852.

    Matched MeSH terms: Cognition/drug effects*
  8. Ramasamy S, Chin SP, Sukumaran SD, Buckle MJ, Kiew LV, Chung LY
    PLoS One, 2015;10(5):e0126565.
    PMID: 25965066 DOI: 10.1371/journal.pone.0126565
    Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
    Matched MeSH terms: Cognition/drug effects
  9. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

    Matched MeSH terms: Cognition/drug effects
  10. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
    Matched MeSH terms: Cognition/drug effects*
  11. You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, et al.
    Nutrients, 2021 Jan 29;13(2).
    PMID: 33572715 DOI: 10.3390/nu13020434
    Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
    Matched MeSH terms: Cognition/drug effects
  12. Chin KY, Tay SS
    Nutrients, 2018 Jul 09;10(7).
    PMID: 29987193 DOI: 10.3390/nu10070881
    Alzheimer’s disease (AD) is plaguing the aging population worldwide due to its tremendous health care and socioeconomic burden. Current treatment of AD only offers symptomatic relief to patients. Development of agents targeting specific pathologies of AD is very slow. Tocotrienol, a member of the vitamin E family, can tackle many aspects of AD, such as oxidative stress, mitochondrial dysfunction and abnormal cholesterol synthesis. This review summarizes the current evidence on the role of tocotrienol as a neuroprotective agent. Preclinical studies showed that tocotrienol could reduce oxidative stress by acting as a free-radical scavenger and promoter of mitochondrial function and cellular repair. It also prevented glutamate-induced neurotoxicity in the cells. Human epidemiological studies showed a significant inverse relationship between tocotrienol levels and the occurrence of AD. However, there is no clinical trial to support the claim that tocotrienol can delay or prevent the onset of AD. As a conclusion, tocotrienol has the potential to be developed as an AD-preventing agent but further studies are required to validate its efficacy in humans.
    Matched MeSH terms: Cognition/drug effects*
  13. Tan BL, Norhaizan ME
    Nutrients, 2019 Oct 25;11(11).
    PMID: 31731503 DOI: 10.3390/nu11112579
    Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
    Matched MeSH terms: Cognition/drug effects*
  14. Yokoyama K
    Neurotoxicology, 2007 Mar;28(2):364-73.
    PMID: 16730798
    Attention has been paid to neurobehavioral effects of occupational and environmental exposures to chemicals such as pesticides, heavy metals and organic solvents. The area of research that includes neurobehavioral methods and effects in occupational and environmental health has been called "Occupational and Environmental Neurology and Behavioral Medicine." The methods, by which early changes in neurological, cognitive and behavioral function can be assessed, include neurobehavioral test battery, neurophysiological methods, questionnaires and structured interview, biochemical markers and imaging techniques. The author presents his observations of neurobehavioral and neurophysiological effects in Tokyo subway sarin poisoning cases as well as in pesticide users (tobacco farmers) in Malaysia in relation to Green Tobacco Sickness (GTS). In sarin cases, a variety effects were observed 6-8 months after exposure, suggesting delayed neurological effects. Studies on pesticide users revealed that organophosphorus and dithiocarbamate affected peripheral nerve conduction and postural balance; subjective symptoms related to GTS were also observed, indicating the effects of nicotine absorbed from wet tobacco leaves. In addition, non-neurological effects of pesticides and other chemicals are presented, in relation to genetic polymorphism and oxidative stress.
    Matched MeSH terms: Cognition/drug effects
  15. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Cognition/drug effects*
  16. Andy SN, Pandy V, Alias Z, Kadir HA
    Life Sci, 2018 Aug 01;206:45-60.
    PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035
    AIM: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.

    MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.

    KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.

    SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.

    Matched MeSH terms: Cognition/drug effects
  17. Taridi NM, Yahaya MF, Teoh SL, Latiff AA, Ngah WZ, Das S, et al.
    Clin Ter, 2011;162(2):93-8.
    PMID: 21533313
    Oxidative stress is caused by imbalance between the productions of reactive oxygen species (ROS) and antioxidant defense mechanisms. Palm oil antioxidants such as tocotrienol rich fraction (TRF) is known to have neuroprotective effects on neurones by acting against free radical induced neuronal cell death. This study was undertaken to elucidate the effect of TRF on oxidative DNA damage and cognitive functions in experimental rats.
    Matched MeSH terms: Cognition/drug effects*
  18. Mohamed S, Lee Ming T, Jaffri JM
    J Sci Food Agric, 2013 Mar 15;93(4):819-27.
    PMID: 23001939 DOI: 10.1002/jsfa.5802
    Catechin-rich oil palm (Elaeis guineensis) leaf extract (OPLE) has good cardiovascular and phytoestrogenic properties. The OPLE (0.5 g day(-1) ) was supplemented to young, healthy, adult human volunteers, and their cognitive learning abilities were compared to placebo-controlled groups (N = 15). Their short-term memories, spatial visualisations, processing speeds, and language skills, were assessed over 2 months by cognitive tests computer programs.
    Matched MeSH terms: Cognition/drug effects*
  19. Singh D, Narayanan S, Müller CP, Vicknasingam B, Yücel M, Ho ETW, et al.
    J Psychoactive Drugs, 2018 12 15;51(1):19-27.
    PMID: 30556488 DOI: 10.1080/02791072.2018.1555345
    Kratom or Mitragyna speciosa (Korth.) is a medicinal plant of Southeast Asia. As a result of its opioid-like effects, it remains unknown whether consumption of kratom tea is associated with impaired cognitive function. We assessed the cognitive function of 70 regular kratom users and 25 control participants using the Cambridge Neuropsychological Test Automated Battery. Participants performed six neuropsychological tasks that assessed motor, learning and memory, attention and executive function. Relative to control participants, higher consumption (>3 glasses daily or mitragynine doses between 72.5 mg and 74.9 mg) of kratom tea was selectively associated with impaired performance on the Paired Associates Learning task, reflecting deficits in visual episodic memory and new learning. Overall, the performance of kratom users compared to control participants, and the performance of high (>3 glasses per day) as well as low (≤3 glasses per day) kratom using groups, were comparable on all neuropsychological domains. Higher intake of kratom juice (>3 glasses daily) did not appear to impair motor, memory, attention or executive function of regular kratom users.
    Matched MeSH terms: Cognition/drug effects*
  20. Chooi WT, Mohd Zaharim N, Desrosiers A, Ahmad I, Yasin MAM, Syed Jaapar SZ, et al.
    J Psychoactive Drugs, 2017 06 29;49(4):326-332.
    PMID: 28661714 DOI: 10.1080/02791072.2017.1342152
    Amphetamine-type stimulants (ATS) use is increasingly prevalent in Malaysia, including among individuals who also use opioids. We evaluated cognitive functioning profiles among individuals with co-occurring opioid and ATS dependence and their lifetime patterns of drug use. Participants (N = 50) enrolling in a clinical trial of buprenorphine/naloxone treatment with or without atomoxetine completed the Raven's Standard Progressive Matrices, Rey-Osterrieth Complex Figure Test, Digit Span, Trail Making and Symbol Digit Substitution tasks. Multidimensional scaling and a K-means cluster analyses were conducted to classify participants into lower versus higher cognitive performance groups. Subsequently, analyses of variance procedures were conducted to evaluate between group differences on drug use history and demographics. Two clusters of individuals with distinct profiles of cognitive performance were identified. The age of ATS use initiation, controlling for the overall duration of drug use, was significantly earlier in the lower than in the higher cognitive performance cluster: 20.9 (95% CI: 18.0-23.8) versus 25.2 (95% CI: 22.4-28.0, p = 0.038). While adverse effects of ATS use on cognitive functioning can be particularly pronounced with younger age, potentially related to greater vulnerability of the developing brain to stimulant and/or neurotoxic effects of these drugs, the current study findings cannot preclude lowered cognitive performance before initiation of ATS use.
    Matched MeSH terms: Cognition/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links