Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Odili JB, Noraziah A, Zarina M
    Comput Intell Neurosci, 2021;2021:6625438.
    PMID: 33986793 DOI: 10.1155/2021/6625438
    This paper presents a comparative performance analysis of some metaheuristics such as the African Buffalo Optimization algorithm (ABO), Improved Extremal Optimization (IEO), Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO), Max-Min Ant System (MMAS), Cooperative Genetic Ant System (CGAS), and the heuristic, Randomized Insertion Algorithm (RAI) to solve the asymmetric Travelling Salesman Problem (ATSP). Quite unlike the symmetric Travelling Salesman Problem, there is a paucity of research studies on the asymmetric counterpart. This is quite disturbing because most real-life applications are actually asymmetric in nature. These six algorithms were chosen for their performance comparison because they have posted some of the best results in literature and they employ different search schemes in attempting solutions to the ATSP. The comparative algorithms in this study employ different techniques in their search for solutions to ATSP: the African Buffalo Optimization employs the modified Karp-Steele mechanism, Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO) employs the path construction with patching technique, Cooperative Genetic Ant System uses natural selection and ordering; Randomized Insertion Algorithm uses the random insertion approach, and the Improved Extremal Optimization uses the grid search strategy. After a number of experiments on the popular but difficult 15 out of the 19 ATSP instances in TSPLIB, the results show that the African Buffalo Optimization algorithm slightly outperformed the other algorithms in obtaining the optimal results and at a much faster speed.
    Matched MeSH terms: Computer Systems
  2. Islam KT, Raj RG, Shamsul Islam SM, Wijewickrema S, Hossain MS, Razmovski T, et al.
    Sensors (Basel), 2020 Jun 24;20(12).
    PMID: 32599883 DOI: 10.3390/s20123578
    Automatic vehicle license plate recognition is an essential part of intelligent vehicle access control and monitoring systems. With the increasing number of vehicles, it is important that an effective real-time system for automated license plate recognition is developed. Computer vision techniques are typically used for this task. However, it remains a challenging problem, as both high accuracy and low processing time are required in such a system. Here, we propose a method for license plate recognition that seeks to find a balance between these two requirements. The proposed method consists of two stages: detection and recognition. In the detection stage, the image is processed so that a region of interest is identified. In the recognition stage, features are extracted from the region of interest using the histogram of oriented gradients method. These features are then used to train an artificial neural network to identify characters in the license plate. Experimental results show that the proposed method achieves a high level of accuracy as well as low processing time when compared to existing methods, indicating that it is suitable for real-time applications.
    Matched MeSH terms: Computer Systems
  3. Khan S, Shiraz M, Wahab AW, Gani A, Han Q, Rahman ZB
    ScientificWorldJournal, 2014;2014:547062.
    PMID: 25097880 DOI: 10.1155/2014/547062
    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.
    Matched MeSH terms: Computer Systems*
  4. Mohd Agos Salim Nasir, Ahmad Izani Md Ismail
    Sains Malaysiana, 2013;42:341-346.
    A high-order uniform Cartesian grid compact finite difference scheme for the Goursat problem is developed. The basic idea of high-order compact schemes is to find the compact approximations to the derivatives terms by differentiating centrally the governing equations. Our compact scheme will approximate the derivative terms by involving the higher terms and reducing the number of grid points. The compact finite difference scheme is given for general form of the Goursat problem in uniform domain and illustrates the performance by applying a linear problem. Numerical experiments have been conducted with the new scheme and encouraging results have been obtained. In this paper we present the compact finite difference scheme for the Goursat problem. With the aid of computational software the scheme was programmed for determining the relative errors of linear Goursat problem.
    Matched MeSH terms: Computer Systems
  5. Reza SM, Ahmad N, Choudhury IA, Ghazilla RA
    Sensors (Basel), 2014 Mar 04;14(3):4342-63.
    PMID: 24599193 DOI: 10.3390/s140304342
    Human motion is a daily and rhythmic activity. The exoskeleton concept is a very positive scientific approach for human rehabilitation in case of lower limb impairment. Although the exoskeleton shows potential, it is not yet applied extensively in clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms (EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The resultant acceleration angle along the z-axis is determined from a kinematics sensor. Twenty volunteers were chosen to perform the experiments. The whole experiment was accomplished in two phases. In the first phase, acceleration angles and EMG data were acquired from the volunteers during both sit-to-stand and stand-to-sit motions. During sit-to-stand movements, the average acceleration angle at activation was 11°-48° and the EMG varied from -0.19 mV to +0.19 mV. On the other hand, during stand-to-sit movements, the average acceleration angle was found to be 57.5°-108° at the activation point and the EMG varied from -0.32 mV to +0.32 mV. In the second phase, a fuzzy controller was designed from the experimental data. The controller was tested and validated with both offline and real time data using LabVIEW.
    Matched MeSH terms: Computer Systems
  6. Al-Haiqi A, Ismail M, Nordin R
    ScientificWorldJournal, 2014;2014:969628.
    PMID: 25295311 DOI: 10.1155/2014/969628
    Covert channels are not new in computing systems, and have been studied since their first definition four decades ago. New platforms invoke thorough investigations to assess their security. Now is the time for Android platform to analyze its security model, in particular the two key principles: process-isolation and the permissions system. Aside from all sorts of malware, one threat proved intractable by current protection solutions, that is, collusion attacks involving two applications communicating over covert channels. Still no universal solution can countermeasure this sort of attack unless the covert channels are known. This paper is an attempt to reveal a new covert channel, not only being specific to smartphones, but also exploiting an unusual resource as a vehicle to carry covert information: sensors data. Accelerometers generate signals that reflect user motions, and malware applications can apparently only read their data. However, if the vibration motor on the device is used properly, programmatically produced vibration patterns can encode stolen data and hence an application can cause discernible effects on acceleration data to be received and decoded by another application. Our evaluations confirmed a real threat where strings of tens of characters could be transmitted errorless if the throughput is reduced to around 2.5-5 bps. The proposed covert channel is very stealthy as no unusual permissions are required and there is no explicit communication between the colluding applications.
    Matched MeSH terms: Computer Systems/trends
  7. Logeswaran R, Chen LC
    J Med Syst, 2012 Apr;36(2):483-90.
    PMID: 20703702 DOI: 10.1007/s10916-010-9493-0
    Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
    Matched MeSH terms: Computer Systems*
  8. Umair M, Hidayat NM, Sukri Ahmad A, Nik Ali NH, Mawardi MIM, Abdullah E
    PLoS One, 2024;19(2):e0297376.
    PMID: 38422065 DOI: 10.1371/journal.pone.0297376
    Developing novel EV chargers is crucial for accelerating Electric Vehicle (EV) adoption, mitigating range anxiety, and fostering technological advancements that enhance charging efficiency and grid integration. These advancements address current challenges and contribute to a more sustainable and convenient future of electric mobility. This paper explores the performance dynamics of a solar-integrated charging system. It outlines a simulation study on harnessing solar energy as the primary Direct Current (DC) EV charging source. The approach incorporates an Energy Storage System (ESS) to address solar intermittencies and mitigate photovoltaic (PV) mismatch losses. Executed through MATLAB, the system integrates key components, including solar PV panels, the ESS, a DC charger, and an EV battery. The study finds that a change in solar irradiance from 400 W/m2 to 1000 W/m2 resulted in a substantial 47% increase in the output power of the solar PV system. Simultaneously, the ESS shows a 38% boost in output power under similar conditions, with the assessments conducted at a room temperature of 25°C. The results emphasize that optimal solar panel placement with higher irradiance levels is essential to leverage integrated solar energy EV chargers. The research also illuminates the positive correlation between elevated irradiance levels and the EV battery's State of Charge (SOC). This correlation underscores the efficiency gains achievable through enhanced solar power absorption, facilitating more effective and expedited EV charging.
    Matched MeSH terms: Computer Systems
  9. Hussin, K., Hassan, M.R., Hamzah, M.L., Fadzli, A., Nik Mohamad, N.A., Nik Him, N.A.S.
    MyJurnal
    The importance of rapid ambulance response to emergency medical crises is undeniable. An early
    access to advanced care is crucial to saving a life. Modern computerised call centre and the hospitalbased ambulance services are believed to enhance the quality of service delivery. However, whether
    it will further reduce the ambulance response time is still debatable. A cross-sectional study was
    conducted in June 2012 until July 2012 at three selected tertiary hospitals in Malaysia. The
    ambulance response time was expressed in a median and interquartile range (IQR) and MannWhitney U test was used to determine the associations between types of ambulance and
    computerised call centre system versus voice only. Wilcoxon Rank Sign Test was used to assess
    the significance of means difference. A hospital-based ambulance had the median time of 0.19
    minutes while community-based ambulance had the median time of 0.20 minutes (The Z score -
    0.916, p-value - 0.360). The hospital with computer call centre had the median time of 0.19 minutes
    while hospital without computer call centre had the median of 0.20 minutes (The Z score - 0.816, P
    value - 0.414).The response time of hospital-based ambulance equipped with computerised call
    centre system was comparable in three selected tertiary hospitals in Malaysia.
    Matched MeSH terms: Computer Systems
  10. Ch'ng YH, Osman MA, Jong HY
    Malays J Med Sci, 2021 Apr;28(2):161-170.
    PMID: 33958970 DOI: 10.21315/mjms2021.28.2.15
    Background: Specific language impairment (SLI) diagnosis is inconvenient due to manual procedures and hardware cost. Computer-aided SLI diagnosis has been proposed to counter these inconveniences. This study focuses on evaluating the feasibility of computer systems used to diagnose SLI.

    Methods: The accuracy of Webgazer.js for software-based gaze tracking is tested under different lighting conditions. Predefined time delays of a prototype diagnosis task automation script are contrasted against with manual delays based on human time estimation to understand how automation influences diagnosis accuracy. SLI diagnosis binary classifier was built and tested based on randomised parameters. The obtained results were cross-compared to Singlims_ES.exe for equality.

    Results: Webgazer.js achieved an average accuracy of 88.755% under global lighting conditions, 61.379% under low lighting conditions and 52.7% under face-focused lighting conditions. The diagnosis task automation script found to execute with actual time delays with a deviation percentage no more than 0.04%, while manually executing time delays based on human time estimation resulted in a deviation percentage of not more than 3.37%. One-tailed test probability value produced by both the newly built classifier and Singlims_ES were observed to be similar up to three decimal places.

    Conclusion: The results obtained should serve as a foundation for further evaluation of computer tools to help speech language pathologists diagnose SLI.

    Matched MeSH terms: Computer Systems
  11. Nurul Husna Kamarudin, Nor Azlina Ab Rahman, Zainul Ibrahim Zainuddin
    MyJurnal
    The Medical imaging service in Malaysia is expanding. The presence of
    imaging technologies needs to be supported by homegrown research to optimize their
    use. This study investigated the contribution of researches by Malaysian practitioners to
    the field of Medical imaging in the Malaysian Citation index (MyCite) database. (Copied from article).
    Matched MeSH terms: Computer Systems
  12. Yuen CW, Karim MR, Saifizul A
    ScientificWorldJournal, 2014;2014:236396.
    PMID: 24991638 DOI: 10.1155/2014/236396
    This paper focuses on the study of the change of various types of riding behaviour, such as speed, brake force, and throttle force applied, when they ride across the speed table. An instrumented motorcycle equipped with various types of sensor, on-board camera, and data logger was used in acquiring the traffic data in the research. Riders were instructed to ride across two speed tables and the riding data were then analyzed to study the behaviour change from different riders. The results from statistical analysis showed that the riding characteristics such as speed, brake force, and throttle force applied are influenced by distance from hump, riding experience, and travel mileage of riders. Riders tend to apply higher brake intensity at distance point 50 m before the speed table and release the braking at point -10 m after the hump. In short, speed table has different rates of influence towards riding behaviour on different factors, such as distance from hump and different riders' attributes.
    Matched MeSH terms: Computer Systems*
  13. Karthikeyan SK, Thangarajan R, Theruvedhi N, Srinivasan K
    Oman J Ophthalmol, 2019 6 15;12(2):73-77.
    PMID: 31198290 DOI: 10.4103/ojo.OJO_226_2018
    Google Play Store was used to search for eye care-related applications the android simulator using various general terms related to eye care to review and categorize various interactive eye care-related applications in android platform from the details available in the application website. Data collected from application description and application developer's webpage include target audience, category of apps, estimated number of downloads, average user rating, involvement of eye care professionals in developing the application, and cost of the app. All these data were collected only from the details provided in the application website considering on online user perspective and the developers were not contacted to collect any other details. In total, 475 applications were identified and grouped into 13 categories depending on the type of service the application provide. Out of which, only 107 (22.53%) applications had mentioned about the eye care professional involvement in their design or development of the application. The applications were also stratified according to the target audience, and many had no user rating with very few downloads. The lack of evidence-based principles and standardization of application development should be taken into consideration to avoid its negative impact on the community, especially in eye care.
    Matched MeSH terms: Computer Systems
  14. Hu S, Anschuetz L, Huth ME, Sznitman R, Blaser D, Kompis M, et al.
    JMIR Res Protoc, 2019 Jan 09;8(1):e12270.
    PMID: 30626571 DOI: 10.2196/12270
    BACKGROUND: Electroencephalography (EEG) studies indicate possible associations between tinnitus and changes in the neural activity. However, inconsistent results require further investigation to better understand such heterogeneity and inform the interpretation of previous findings.

    OBJECTIVE: This study aims to investigate the feasibility of EEG measurements as an objective indicator for the identification of tinnitus-associated neural activities.

    METHODS: To reduce heterogeneity, participants served as their own control using residual inhibition (RI) to modulate the tinnitus perception in a within-subject EEG study design with a tinnitus group. In addition, comparison with a nontinnitus control group allowed for a between-subjects comparison. We will apply RI stimulation to generate tinnitus and nontinnitus conditions in the same subject. Furthermore, high-frequency audiometry (up to 13 kHz) and tinnitometry will be performed.

    RESULTS: This work was funded by the Infrastructure Grant of the University of Bern, Bern, Switzerland and Bernafon AG, Bern, Switzerland. Enrollment for the study described in this protocol commenced in February 2018. Data analysis is currently under way and the first results are expected to be submitted for publication in 2019.

    CONCLUSIONS: This study design helps in comparing the neural activity between conditions in the same individual, thereby addressing a notable limitation of previous EEG tinnitus studies. In addition, the high-frequency assessment will help to analyze and classify tinnitus symptoms beyond the conventional clinical standard.

    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/12270.

    Matched MeSH terms: Computer Systems
  15. Hema CR, Paulraj MP, Yaacob S, Adom AH, Nagarajan R
    Adv Exp Med Biol, 2011;696:565-72.
    PMID: 21431597 DOI: 10.1007/978-1-4419-7046-6_57
    A brain machine interface (BMI) design for controlling the navigation of a power wheelchair is proposed. Real-time experiments with four able bodied subjects are carried out using the BMI-controlled wheelchair. The BMI is based on only two electrodes and operated by motor imagery of four states. A recurrent neural classifier is proposed for the classification of the four mental states. The real-time experiment results of four subjects are reported and problems emerging from asynchronous control are discussed.
    Matched MeSH terms: Computer Systems
  16. Mohsin AH, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    J Med Syst, 2019 May 22;43(7):192.
    PMID: 31115768 DOI: 10.1007/s10916-019-1264-y
    In medical systems for patient's authentication, keeping biometric data secure is a general problem. Many studies have presented various ways of protecting biometric data especially finger vein biometric data. Thus, It is needs to find better ways of securing this data by applying the three principles of information security aforementioned, and creating a robust verification system with high levels of reliability, privacy and security. Moreover, it is very difficult to replace biometric information and any leakage of biometrics information leads to earnest risks for example replay attacks using the robbed biometric data. In this paper presented criticism and analysis to all attempts as revealed in the literature review and discussion the proposes a novel verification secure framework based confidentiality, integrity and availability (CIA) standard in triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES) techniques for medical systems patient's authentication. Three stages are performed on discussion. Firstly, proposes a new hybrid model pattern in order to increase the randomization based on radio frequency identification (RFID) and finger vein biometrics. To achieve this, proposed a new merge algorithm to combine the RFID features and finger vein features in one hybrid and random pattern. Secondly, how the propose verification secure framework are followed the CIA standard for telemedicine authentication by combination of AES encryption technique, blockchain and PSO in steganography technique based on proposed pattern model. Finally, discussed the validation and evaluation of the proposed verification secure framework.
    Matched MeSH terms: Computer Systems*
  17. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Muzammil H
    J Med Syst, 2017 Dec 29;42(2):30.
    PMID: 29288419 DOI: 10.1007/s10916-017-0883-4
    The growing worldwide population has increased the need for technologies, computerised software algorithms and smart devices that can monitor and assist patients anytime and anywhere and thus enable them to lead independent lives. The real-time remote monitoring of patients is an important issue in telemedicine. In the provision of healthcare services, patient prioritisation poses a significant challenge because of the complex decision-making process it involves when patients are considered 'big data'. To our knowledge, no study has highlighted the link between 'big data' characteristics and real-time remote healthcare monitoring in the patient prioritisation process, as well as the inherent challenges involved. Thus, we present comprehensive insights into the elements of big data characteristics according to the six 'Vs': volume, velocity, variety, veracity, value and variability. Each of these elements is presented and connected to a related part in the study of the connection between patient prioritisation and real-time remote healthcare monitoring systems. Then, we determine the weak points and recommend solutions as potential future work. This study makes the following contributions. (1) The link between big data characteristics and real-time remote healthcare monitoring in the patient prioritisation process is described. (2) The open issues and challenges for big data used in the patient prioritisation process are emphasised. (3) As a recommended solution, decision making using multiple criteria, such as vital signs and chief complaints, is utilised to prioritise the big data of patients with chronic diseases on the basis of the most urgent cases.
    Matched MeSH terms: Computer Systems
  18. Faheem M, Fizza G, Ashraf MW, Butt RA, Ngadi MA, Gungor VC
    Data Brief, 2021 Apr;35:106854.
    PMID: 33659599 DOI: 10.1016/j.dib.2021.106854
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid.
    Matched MeSH terms: Computer Systems
  19. Halmi MI, Jirangon H, Johari WL, Rachman AR, Shukor MY, Syed MA
    ScientificWorldJournal, 2014;2014:834202.
    PMID: 24977231 DOI: 10.1155/2014/834202
    Luminescence-based assays for toxicants such as Microtox, ToxAlert, and Biotox have been used extensively worldwide. However, the use of these assays in near real time conditions is limited due to nonoptimal assay temperature for the tropical climate. An isolate that exhibits a high luminescence activity in a broad range of temperatures was successfully isolated from the mackerel, Rastrelliger kanagurta. This isolate was tentatively identified as Photobacterium sp. strain MIE, based on partial 16S rDNA molecular phylogeny. Optimum conditions that support high bioluminescence activity occurred between 24 and 30°C, with pH 5.5 to 7.5, 10 to 20 g/L of sodium chloride, 30 to 50 g/L of tryptone, and 4 g/L of glycerol as the carbon source. Assessment of near real time capability of this bacterial system, Xenoassay light to monitor heavy metals from a contaminated river running through the Juru River Basin shows near real time capability with assaying time of less than 30 minutes per samples. Samples returned to the lab were tested with a standard Microtox assay using Vibrio fishceri. Similar results were obtained to Xenoassay light that show temporal variation of copper concentration. Thus, this strain is suitable for near real time river monitoring of toxicants especially in the tropics.
    Matched MeSH terms: Computer Systems
  20. Faisal A, Parveen S, Badsha S, Sarwar H, Reza AW
    J Med Syst, 2013 Jun;37(3):9938.
    PMID: 23504472 DOI: 10.1007/s10916-013-9938-3
    An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.
    Matched MeSH terms: Computer Systems
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links