Displaying publications 1 - 20 of 150 in total

Abstract:
Sort:
  1. Milad A, Babalghaith AM, Al-Sabaeei AM, Dulaimi A, Ali A, Reddy SS, et al.
    Int J Environ Res Public Health, 2022 Nov 11;19(22).
    PMID: 36429580 DOI: 10.3390/ijerph192214863
    The environmental concerns of global warming and energy consumption are among the most severe issues and challenges facing human beings worldwide. Due to the relatively higher predicted temperatures (150-180 °C), the latest research on pavement energy consumption and carbon dioxide (CO2) emission assessment mentioned contributing to higher environmental burdens such as air pollution and global warming. However, warm-mix asphalt (WMA) was introduced by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA) to reduce these environmental problems. This study aims to provide a comparative overview of WMA and HMA from environmental and economic perspectives in order to highlight the challenges, motivations, and research gaps in using WMA technology compared to HMA. It was discovered that the lower production temperature of WMA could significantly reduce the emissions of gases and fumes and thus reduce global warming. The lower production temperature also provides a healthy work environment and reduces exposure to fumes. Replacing HMA with WMA can reduce production costs because of the 20-75% lower energy consumption in WMA production. It was also released that the reduction in energy consumption is dependent on the fuel type, energy source, material heat capacity, moisture content, and production temperature. Other benefits of using WMA are enhanced asphalt mixture workability and compaction because the additives in WMA reduce asphalt binder viscosity. It also allows for the incorporation of more waste materials, such as reclaimed asphalt pavement (RAP). However, future studies are recommended on the possibility of using renewable, environmentally friendly, and cost-effective materials such as biomaterials as an alternative to conventional WMA-additives for more sustainable and green asphalt pavements.
    Matched MeSH terms: Construction Materials*
  2. Fediuk R, Mugahed Amran YH, Mosaberpanah MA, Danish A, El-Zeadani M, Klyuev SV, et al.
    Materials (Basel), 2020 Oct 22;13(21).
    PMID: 33105753 DOI: 10.3390/ma13214712
    The incessant demand for concrete is predicted to increase due to the fast construction developments worldwide. This demand requires a huge volume of cement production that could cause an ecological issue such as increasing the rates of CO2 emissions in the atmosphere. This motivated several scholars to search for various alternatives for cement and one of such alternatives is called sulfur-based concrete. This concrete composite contributes to reduce the amount of cement required to make conventional concrete. Sulfur can be used as a partial-alternate binder to Ordinary Portland Cement (OPC) to produce sulfur-based concrete, which is a composite matrix of construction materials collected mostly from aggregates and sulfur. Sulfur modified concrete outperforms conventional concrete in terms of rapid gain of early strength, low shrinkage, low thermal conductivity, high durability resistance and excellent adhesion. On the basis of mentioned superior characteristics of sulfur-based concrete, it can be applied as a leading construction material for underground utility systems, dams and offshore structures. Therefore, this study reviews the sources, emissions from construction enterprises and compositions of sulfur; describes the production techniques and properties of sulfur; and highlights related literature to generate comprehensive insights into the potential applications of sulfur-based concrete in the construction industry today.
    Matched MeSH terms: Construction Materials
  3. Maxwell O, Emmanuel JS, Olusegun AO, Cyril EO, Ifeanyi AT, Embong Z
    Radiat Prot Dosimetry, 2019 May 01;183(3):332-335.
    PMID: 30085254 DOI: 10.1093/rpd/ncy121
    Building materials of different brands were assessed for the concentrations of 226Ra, 232Th and 40K using HPGe detector. The activity concentrations in the measured samples ranged from 27 ± 8 to 82 ± 8 Bq kg-1 for 226Ra, 41 ± 4 to 101 ± 8 Bq kg-1 for 232Th and 140 ± 8 to 940 ± 19 Bq kg-1 for 40K, respectively. The Radium equivalent (Raeq) activity from the samples was found to be <370 Bq kg-1 as the recommended value for construction materials. This study will set a baseline data for significant standards on radiation exposure of the measured radionuclides in the selected building materials used in Nigeria.
    Matched MeSH terms: Construction Materials*
  4. Jiang Y, Ling TC, Mo KH, Shi C
    J Environ Manage, 2019 Jul 15;242:440-449.
    PMID: 31071620 DOI: 10.1016/j.jenvman.2019.04.098
    In light of concerns relating to improper waste disposal and resources preservation, reclamation of the discarded glass in construction materials had been extensively carried out since 1963. In the past decade, although more than 100 papers associated with the use of glass powder (GP) in the micron level scale were published, comprehensive review of all practical applications in cement-based materials and construction products is not available. This paper therefore provides a summary of the body of knowledge on the interaction and effects of using GP in cement-based and extended construction materials. This review concludes that GP is an innovative and promising eco-supplementary cementitious material. Beyond that, use of GP is demonstrated to be potentially beneficial as a precursor in geopolymer and suitable for manufacturing eco-cement, artificial lightweight aggregate and composite phase change material. The multiple applications of GP are seen as an important step towards waste glass recycling as a sustainable construction material and for the overall betterment of the industry.
    Matched MeSH terms: Construction Materials*
  5. Nadesan K
    Med Sci Law, 2000 Jan;40(1):83-7.
    PMID: 10689867
    An 18-year-old construction worker suddenly collapsed while handling a power-actuated nail gun and died shortly after. A neat, almost circular puncture wound was found on the front of his left chest. No fire-arm residues were detected on the surrounding skin. The police stated that it was an accidental injury, at a construction site, where a nail fired from a nail gun by the deceased had deflected off the wall and struck him on the front of the chest. Since the entry wound appeared to be a neat hole, and that too on the front of the left chest overlying the heart area, there was reluctance on the part of the pathologist to accept it as an accidental injury due to a ricochet. A visit to the scene, interrogation of witnesses, examination of the alleged tool and post-mortem X-ray of the deceased were undertaken prior to autopsy. A bent nail was found in the heart. The scene visit and the subsequent autopsy revealed that the nail took a roughly circular flightpath after it had struck the wall, all the while travelling with its pointed end directed forward. Within the body too, the nail maintained the same path. Various medicolegal issues are discussed pertaining to nail-gun injuries. The importance of a visit to the scene, examination of the alleged tool, interrogation of witnesses and the X-ray of the body, all prior to autopsy, are emphasized. The conclusion was: accidental death due to the unusual ricochet of a nail.
    Matched MeSH terms: Construction Materials/adverse effects*
  6. Chai CT, Putuhena FJ, Selaman OS
    Water Sci Technol, 2017 Dec;76(11-12):2988-2999.
    PMID: 29210686 DOI: 10.2166/wst.2017.472
    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
    Matched MeSH terms: Construction Materials
  7. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    MethodsX, 2021;8:101182.
    PMID: 33365262 DOI: 10.1016/j.mex.2020.101182
    A novel methodological approach was developed to quantified the volume of industrial waste desposal (IWD) site, combined with municipal waste materials (MWM), through the integration of a non-invasive, fast, and less expenssive RES2-D Electrical Resistivity Technique (ERT), using Wenner-Schlumberger electrode array geophysical method with Oasis Montaj software. Underground water bearing structures, and the eco-system are being contaminated through seepage of the plumes emanating from the mixtures of the industrial waste materials (IWM), made of moist cemented soil with municipal solid wastes (MSW) dumped at the site. The distribution of the contiminant hazardous plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers was clearly map and delineated within the near-surface structures, using the triplicate technique to collect samples of the soil with the waste mixtures, and the water analysis for the presence of dissolved ions. The deployed method helped to monitor the seepage of the contaminant leachate plumes to the groundwater aquifer units via the ground surface, through the subsurface stratum lithological layers, and hence, estimation of the waste materials' volume was possibly approximated to be 312,000 m3. In summary, the novel method adopted are as presented below:•The novel method is transferable, reproduce-able, and most importantly, it is unambiguous technique for the quantification of environmental, industrial and municipal waste materials.•It helps to map the distribution of the plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers that was clearly delineated within the near-surface structures underlain the study site.•The procedure helped in the monitoring of leachate contaminants plumes seepages into the surface water bodies and the groundwater aquifer units, via the ground surface, through to the porous subsurface stratum lithological layers.
    Matched MeSH terms: Construction Materials
  8. Mohajerani A, Kadir AA, Larobina L
    Waste Manag, 2016 Jun;52:228-44.
    PMID: 26975623 DOI: 10.1016/j.wasman.2016.03.012
    The disposal and littering of cigarette butts (CBs) is a serious environmental problem. Trillions of cigarettes are produced every year worldwide, resulting in millions of tonnes of toxic waste being dumped into the environment in the form of cigarette butts. As CBs have poor biodegradability, it can take many years for them to break down. This paper reviews and presents some of the results of a study on the recycling of CBs into fired clay bricks. Bricks with 2.5%, 5%, 7.5%, and 10% CB content by weight were manufactured and tested, and then compared against control clay bricks with 0% CB content. The results showed that the dry density decreased by up to 30% and the compressive strength decreased by 88% in bricks with 10% CBs. The calculated compressive strength of bricks with 1% CBs was determined to be 19.53Mpa. To investigate the effect of mixing time, bricks with 7.5% CB content were manufactured with different mixing times of 5, 10, and 15min. To test the effect of heating time on the properties of CB bricks, the heating rate used during manufacturing was changed to 0.7, 2, 5, and 10°Cmin(-1). Bricks with 0% and 5% CB content were fired with these heating rates. Leachate tests were carried out for bricks with 0%, 2.5%, 5%, and 10% CB content. The emissions released during firing were tested for bricks with 0% and 5% CB content using heating rates of 0.7, 2, 5, and 10°Cmin(-1). The gases tested were carbon monoxide (CO), carbon dioxide (CO2), chlorine (Cl2), nitrogen oxide (NO), and hydrogen cyanide (HCN). Finally, estimations were made for the energy that could be saved by firing bricks incorporating CBs. Calculations showed that up to 58% of the firing energy could potentially be saved. Bricks were shown to be a viable solution for the disposal of CBs. They can reduce contamination caused by cigarette butts and provide a masonry construction material that can be either loadbearing or non-loadbearing, depending on the quantity of CBs incorporated. This paper proposes the use of bricks with 1% CB content throughout the brick-manufacturing industry. If bricks contained as little as 1% CB content, they would still provide a solution for the issue of CB recycling while maintaining properties very similar to those of a non-CB brick. Our calculations show that, theoretically, only 2.5% of the world's annual brick production is necessary to completely offset the worldwide, annual cigarette production.
    Matched MeSH terms: Construction Materials*
  9. Abdullahi S, Ismail AF, Samat S
    Radiat Prot Dosimetry, 2019 Dec 31;186(4):520-523.
    PMID: 31034551 DOI: 10.1093/rpd/ncz125
    The activity concentrations of 226Ra, 232Th and 40K radionuclides from common building materials used by Malaysian people for construction purposes were studied using High-Purity Germanium (HPGe) detector. The measured activity concentrations of the aforementioned radionuclides range from 10 ± 1 Bq kg-1 (limestone) to 155 ± 61 Bq kg-1 (feldspar), 12 ± 3 Bq kg-1 (limestone) to 274 ± 8 Bq kg-1 (kaolin) and 62 ± 19 Bq kg-1 (limestone) to 1114 ± 20 Bq kg-1 (pottery stone) for 226Ra, 232Th and 40K, respectively. The measured activity concentrations of the natural radionuclides reported herein were found to be in accordance with other previous studies. In general, the activity concentration of the natural radionuclides revealed that all the determined values were below the recommended limit.
    Matched MeSH terms: Construction Materials/analysis*
  10. Lenz M, Kard B, Creffield JW, Evans TA, Brown KS, Freytag ED, et al.
    J Econ Entomol, 2013 Jun;106(3):1395-403.
    PMID: 23865207
    A comparative field study was conducted to evaluate the ability of subterranean termites to damage a set of four different plastic materials (cable sheathings) exposed below- and above-ground. Eight pest species from six countries were included, viz., Coptotermes formosanus (Shiraki) in China, Japan, and the United States; Coptotermes gestroi (Wasmann) in Thailand and Malaysia; Coptotermes curvignathus (Holmgren) and Coptotermes kalshoveni (Kemner) in Malaysia; Coptotermes acinaciformis (Froggatt) with two forms of the species complex and Mastotermes darwiniensis (Froggatt) in Australia; and Reticulitermes flavipes (Kollar) in the United States. Termite species were separated into four tiers relative to decreasing ability to damage plastics. The first tier, most damaging, included C. acinaciformis, mound-building form, and M. darwiniensis, both from tropical Australia. The second tier included C. acinaciformis, tree-nesting form, from temperate Australia and C. kalshoveni from Southeast Asia. The third tier included C. curcignathus and C. gestroi from Southeast Asia and C. formosanus from China, Japan, and the United States, whereas the fourth tier included only R. flavipes, which caused no damage. A consequence of these results is that plastics considered resistant to termite damage in some locations will not be so in others because of differences in the termite fauna, for example, resistant plastics from the United States and Japan will require further testing in Southeast Asia and Australia. However, plastics considered resistant in Australia will be resistant in all other locations.
    Matched MeSH terms: Construction Materials
  11. Bagherifaez M, Behnia A, Majeed AA, Hwa Kian C
    ScientificWorldJournal, 2014;2014:567619.
    PMID: 25180203 DOI: 10.1155/2014/567619
    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.
    Matched MeSH terms: Construction Materials/standards*
  12. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Construction Materials*
  13. Mohajerani A, Hui SQ, Mirzababaei M, Arulrajah A, Horpibulsuk S, Abdul Kadir A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394815 DOI: 10.3390/ma12162513
    Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical properties of the composite material. When comparing fibre reinforcement to traditional reinforcement, the ratio of fibre required is significantly less, making fibre reinforcement both energy and economically efficient. More recently, waste fibres have been studied for their potential as reinforcement in construction materials. The build-up of waste materials all around the world is a known issue, as landfill space is limited, and the incineration process requires considerable energy and produces unwanted emissions. The utilisation of waste fibres in construction materials can alleviate these issues and promote environmentally friendly and sustainable solutions that work in the industry. This study reviews the types, properties, and applications of different fibres used in a wide range of materials in the construction industry, including concrete, asphalt concrete, soil, earth materials, blocks and bricks, composites, and other applications.
    Matched MeSH terms: Construction Materials
  14. Islam R, Nazifa TH, Yuniarto A, Shanawaz Uddin ASM, Salmiati S, Shahid S
    Waste Manag, 2019 Jul 15;95:10-21.
    PMID: 31351595 DOI: 10.1016/j.wasman.2019.05.049
    Associated with the continuing increase of construction activities such as infrastructure projects, commercial buildings and housing programs, Bangladesh has been experiencing a rapid increase of construction and demolition (C&D) waste. Till now, the generation rate of C&D waste has not been well understood or not explicitly documented in Bangladesh. This study aims to provide an approach to estimate C&D waste generation using waste generation rates (WGR) through regression analysis. Furthermore, analyses the economic benefit of recycling C&D waste. The results revealed that WGR 63.74 kg/m2 and 1615 kg/m2 for construction and demolition activities respectively. Approximately, in financial year (FY) 2016, 1.28 million tons (0.149 construction and 1.139 demolition) waste were generated in Dhaka city, of which the three largest proportions were concrete (60%), brick/block (21%) and mortar (9%). After collection they were dumped in either landfills or unauthorized places. Therefore, it can be summarized as: waste is a resource in wrong place. The results of this study indicate that rapid urbanization of Dhaka city would likely experience the peak in the generation of C&D waste. This paper thus designates that C&D waste recycling is an entrepreneurial activity worth venturing into and an opportunity for extracting economic and environmental benefits from waste. The research findings also show that recycling of concrete and brick waste can add economic value of around 44.96 million USD. In addition, recycling of C&D waste leads to important reductions in CO2 emissions, energy use, natural resources and illegal landfills. Therefore, the findings of WGR and economic values provide valuable quantitative information for the future C&D waste management exercises of various stakeholders such as government, industry and academy.
    Matched MeSH terms: Construction Materials
  15. Yeo JS, Koting S, Onn CC, Mo KH
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29009-29036.
    PMID: 33881693 DOI: 10.1007/s11356-021-13836-3
    Paving block is a widely used pavement material due to its long service life, fast and easy production and easily replaced for maintenance purpose. The huge production volume of paving blocks consumes large amount of natural aggregates such as sand and granite. Therefore, there is a necessity to review the utilization of alternative materials as the aggregate replacement to cut down both the consumption of natural resources and disposal of various waste. This paper thus analyses published works and provides a summary of knowledge on the effect of utilizing selected waste materials such as soda-lime glass, cathode ray tube (CRT) glass, recycled concrete waste, marble waste, crumb rubber (CR) waste and waste foundry sand (WFS) as aggregate replacement in concrete paving blocks fabrication. The influence of each waste material on the properties of paving block is discussed and highlighted in this paper. The adherence of the waste material paving block to the standard requirements is also presented to provide a clear direction on the utilization of these materials for practical application. Soda-lime glass, CRT glass, pre-treated RCA and calcined WFS have the potential to be utilized in high quantities (30-100%), normal RCA and marble waste can be incorporated in moderate amount (30%) while CR waste and WFS is limited to low amount (6-10%). In overall, the usage of waste materials as aggregate replacement has good potential for producing eco-friendly concrete paving block towards the sustainable development of construction material.
    Matched MeSH terms: Construction Materials
  16. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YB, et al.
    PLoS One, 2015;10(10):e0140667.
    PMID: 26473957 DOI: 10.1371/journal.pone.0140667
    The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
    Matched MeSH terms: Construction Materials/analysis*
  17. Phillip E, Khoo KS, Yusof MAW, Abdel Rahman RO
    J Environ Manage, 2021 Feb 15;280:111703.
    PMID: 33288318 DOI: 10.1016/j.jenvman.2020.111703
    Disused Sealed Radioactive Sources (DSRS) borehole disposal is an innovative concept recommended by international atomic energy agency (IAEA) to improve the safety and security of the management end point for these sources. A green application of Palm Oil Fuel Ash (POFA) as a supplementary material for cementitious backfill barrier in DSRS borehole disposal facility is proposed. Samples with up to 50% POFA replacement complied with the mechanical and hydraulic performance requirements for backfill barriers in retrievable radioactive waste disposal facilities. The structures of one year old OPC and optimum OPC-POFA cement backfills were evaluated using FESEM, XRD, EDXRF, BET, and TGA and their 226 Ra confinement performances were assessed. 30% POFA replacement improved the geochemical conditions by reducing competitive Ca2+ release into the disposal environment. It enhanced 226Ra confinement performance independently on the amount of water intrusion or releases below 2% of 1 Ci source. The improved performance is attributed to the higher fraction of active sites of OPC-POFA backfill compared to that of OPC backfill. 226Ra sorption onto C-S-H is irreversible, spontaneous, endothermic, and independent on the degree of the surface filling. The provided experimental data and theoretical analysis proved the feasibility of this green use of POFA in reducing the radiological hazard of 226Ra.
    Matched MeSH terms: Construction Materials
  18. Sanusi MSM, Ramli AT, Hassan WMSW, Lee MH, Izham A, Said MN, et al.
    Environ Int, 2017 07;104:91-101.
    PMID: 28412010 DOI: 10.1016/j.envint.2017.01.009
    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh-1(156-392nGyh-1) and 4 times higher than the world average value. High radioactivity levels of238U (95±12Bqkg-1),232Th (191±23Bqkg-1,) and40K (727±130Bqkg-1) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy-1per man. The recommended ICRP reference level (1-20mSvy-1) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer.
    Matched MeSH terms: Construction Materials
  19. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Construction Materials
  20. Mehmannavaz T, Ismail M, Radin Sumadi S, Rafique Bhutta MA, Samadi M, Sajjadi SM
    ScientificWorldJournal, 2014;2014:461241.
    PMID: 24696646 DOI: 10.1155/2014/461241
    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
    Matched MeSH terms: Construction Materials/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links