Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Lau NS, Matsui M, Abdullah AA
    Biomed Res Int, 2015;2015:754934.
    PMID: 26199945 DOI: 10.1155/2015/754934
    Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed.
    Matched MeSH terms: Cyanobacteria/genetics; Cyanobacteria/metabolism*
  2. Shaari AL, Surif M, Latiff FA, Omar WM, Ahmad MN
    Trop Life Sci Res, 2011 May;22(1):51-69.
    PMID: 24575209
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0-5, mid = week 6-10 and final = week 11-15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to fluctuate widely with light intensity ranging between 182.23-1278 μmol photon m(-2)s(-1), temperature between 29.56°C -31.59°C, dissolved oxygen (DO) between 4.56-8.21 mg/l, pH between 7.65-8.49 and salinity between 20‰-30‰. Ammonium (NH4 (+)-N), nitrite (NO2 (-)-N), nitrate (NO3 (-)-N), and orthophosphate (PO4 (3-)-P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p<0.05) in nutrients concentrations among the cultivation stages. All nutrients concentrations however were still in the tolerable level and safe for shrimp culture. The chlorophyll a contents were found to range from 5.03±2.17 to 32.61±0.35 μg/l throughout the cultivation period. A total of 19 microalgae species were found in the shrimp pond, with diatoms contributing up to 72% of the species followed by Chlorophyta (11%) and Cyanophyta (11%). However, weekly species abundance varied through the study period. At the initial stage, when there were no shrimps in the pond, Anabaena spp. and Oscillatoria spp. (Cyanophyta) were the dominant species, followed by Chlorella sp. and Dunaliella sp. (Chlorophyta). When shrimps were introduced into the pond, Amphora sp., Navicula sp. Gyrosigma sp. and Nitzschia sp. (diatoms) started to exist. At the middle and towards the final stage of the shrimp culture period diatoms were the dominant species. The Chlorophyta (Chlorella sp.) domination took place only twice, which was at week 2 and 13. The absence of some of the coastal water microalgae species in the shrimp pond was most likely due to the fact that they could not tolerate the physicochemical factors of harsh environment. In this study, Cylindrotheca closterium was regarded as the most tolerant species among the microalgae due to its ability to exist for 6 weeks out of the 15 weeks of cultivation.
    Matched MeSH terms: Cyanobacteria
  3. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
    Matched MeSH terms: Cyanobacteria/enzymology*
  4. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Cyanobacteria
  5. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
    Matched MeSH terms: Cyanobacteria/metabolism
  6. Khatoon H, Kok Leong L, Abdu Rahman N, Mian S, Begum H, Banerjee S, et al.
    Bioresour Technol, 2018 Feb;249:652-658.
    PMID: 29091850 DOI: 10.1016/j.biortech.2017.10.052
    The aim of this study was to determine the effect of different light sources and media (wastewater and BBM) on the growth of Pseudanabaena mucicola and its phycobiliprotein production. Results showed that P. mucicola grown in white light using wastewater as medium attributed higher biomass (0.55 g L-1) and when extracted with water, also showed significantly higher (P cyanobacteria grown in wastewater could cut down the production cost of phycobiliprotein.
    Matched MeSH terms: Cyanobacteria*
  7. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC
    PLoS One, 2014;9(5):e97643.
    PMID: 24874081 DOI: 10.1371/journal.pone.0097643
    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.
    Matched MeSH terms: Cyanobacteria/physiology*; Cyanobacteria/chemistry
  8. Foo SC, Chapman IJ, Hartnell DM, Turner AD, Franklin DJ
    Environ Sci Pollut Res Int, 2020 Nov;27(31):38916-38927.
    PMID: 32638304 DOI: 10.1007/s11356-020-09729-6
    The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40-4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p 
    Matched MeSH terms: Cyanobacteria*
  9. Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, et al.
    J Agric Food Chem, 2021 Oct 27;69(42):12385-12401.
    PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632
    Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
    Matched MeSH terms: Cyanobacteria*
  10. Hena S, Rozi R, Tabassum S, Huda A
    Environ Sci Pollut Res Int, 2016 Aug;23(15):14868-80.
    PMID: 27072032 DOI: 10.1007/s11356-016-6540-5
    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
    Matched MeSH terms: Cyanobacteria
  11. Lau SC, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT
    FEMS Microbiol Ecol, 2013 May;84(2):259-69.
    PMID: 23237658 DOI: 10.1111/1574-6941.12057
    Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
    Matched MeSH terms: Cyanobacteria/genetics; Cyanobacteria/isolation & purification
  12. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
    Matched MeSH terms: Cyanobacteria/classification*; Cyanobacteria/genetics; Cyanobacteria/isolation & purification
  13. Nakamoto H, Amaya Y, Komatsu T, Suzuki T, Dohmae N, Nakamura Y, et al.
    Biochem. J., 2018 08 16;475(15):2559-2576.
    PMID: 30045873 DOI: 10.1042/BCJ20180230
    Hsp90 is an ATP-dependent molecular chaperone that assists folding and conformational maturation/maintenance of many proteins. It is a potential cancer drug target because it chaperones oncoproteins. A prokaryotic homolog of Hsp90 (HtpG) is essential for thermo-tolerance in some bacteria and virulence of zoonotic pathogens. To identify a new class of small molecules which target prokaryotic and eukaryotic Hsp90s, we studied the effects of a naturally occurring cyclic sesquiterpene, zerumbone, which inhibits proliferation of a wide variety of tumor cells, on the activity of Hsp90. Zerumbone enhanced the ATPase activity of cyanobacterial Hsp90 (Hsp90SE), yeast Hsp90, and human Hsp90α. It also enhanced the catalytic efficiency of Hsp90SE by greatly increasing kcat Mass analysis showed that zerumbone binds to cysteine side chains of Hsp90SE covalently. Mutational studies identified 3 cysteine residues (one per each domain of Hsp90SE) that are involved in the enhancement, suggesting the presence of allosteric sites in the middle and C-terminal domains of Hsp90SE Treatment of cyanobacterial cells with zerumbone caused them to become very temperature-sensitive, a phenotype reminiscent of cyanobacterial Hsp90 mutants, and also decreased the cellular level of linker polypeptides that are clients for Hsp90SE Zerumbone showed cellular toxicity on cancer-derived mammalian cells by inducing apoptosis. In addition, zerumbone inhibited the binding of Hsp90/Cdc37 to client kinases. Altogether, we conclude that modification of cysteine residues of Hsp90 by zerumbone enhances its ATPase activity and inhibits physiological Hsp90 function. The activation of Hsp90 may provide new strategies to inhibit its chaperone function in cells.
    Matched MeSH terms: Cyanobacteria/enzymology*
  14. Khairiah Jusoh, Nik Marzuki Sidik, Mohd. Fahmi Ismail, Shaanaz Mohd. Yusof, Tunisah Risman, Ahmad Mahir Razali, et al.
    The aim of this work is to investigate the effect of exposure of heavy metals such as Ni, Fe and Mn on the growth of the cyanobacteria Anabaena flos-aquae, which can be found in fresh water environment. Results of the experiments showed that exposure of A. flos-aquae to Ni caused the most toxic effect as compared to exposure with Fe and Mn. The 96 hr LC50 value for Ni exposure was 0.321 mg/mL (approximately 30% inhibition), whereas Mn was the second most toxic metal followed by Fe with the 96 hr LC50 values of 0.684 mg/mL and 3.020 mg/mL respectively. This study demonstrated that even though Fe and Mn are essential micronutrients for A. flos-aquae, both show toxic effects at high concentrations. The difference in the toxicity value between Fe and Mn for A. flos-aquae is five times and this indicates that Mn was five times more toxic to A. flos-aquae than Fe suggesting that the Cyanobacteria is more tolerant to Fe when compared with Mn.
    Matched MeSH terms: Cyanobacteria
  15. Saleh N, Al-Jassabi S, Eid AH, Nau WM
    Front Chem, 2021;9:660927.
    PMID: 33937198 DOI: 10.3389/fchem.2021.660927
    Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
    Matched MeSH terms: Cyanobacteria
  16. Fathoni I, Petitbois JG, Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Yoshimura E, et al.
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882989 DOI: 10.3390/molecules25173986
    Cyanobacteria are reported as rich sources of secondary metabolites that provide biological activities such as enzyme inhibition and cytotoxicity. Ten depsipeptide derivatives (lyngbyabellins) were isolated from a Malaysian Moorea bouillonii and a Red Sea Okeania sp.: lyngbyabellins G (1), O (2), P (3), H (4), A (7), 27-deoxylyngbyabellin A (5), and homohydroxydolabellin (6). This study indicated that lyngbyabellins displayed cytotoxicity, antimalarial, and antifouling activities. The isolated compounds were tested for cytotoxic effect against human breast cancer cells (MCF7), for antifouling activity against Amphibalanus amphitrite barnacle larvae, and for antiplasmodial effect towards Plasmodium falciparum. Lyngbyabellins A and G displayed potent antiplasmodial effect against Plasmodium, whereas homohydroxydolabellin showed moderate effect. For antifouling activity, the side chain decreases the activity slightly, but the essential feature is the acyclic structure. As previously reported, the acyclic lyngbyabellins are less cytotoxic than the corresponding cyclic ones, and the side chain increases cytotoxicity. This study revealed that lyngbyabellins, despite being cytotoxic agents as previously reported, also exhibit antimalarial and antifouling activities. The unique chemical structures and functionalities of lyngbyabellin play an essential role in their biological activities.
    Matched MeSH terms: Cyanobacteria/chemistry*
  17. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, et al.
    J Nat Prod, 2020 06 26;83(6):1925-1930.
    PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164
    Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
    Matched MeSH terms: Cyanobacteria/chemistry*
  18. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Cyanobacteria/chemistry*
  19. Stevenson MA, McGowan S, Anderson NJ, Foy RH, Leavitt PR, McElarney YR, et al.
    Glob Chang Biol, 2016 Apr;22(4):1490-504.
    PMID: 26666434 DOI: 10.1111/gcb.13194
    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210) Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13) C) and nitrogen (δ(15) N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.
    Matched MeSH terms: Cyanobacteria
  20. Mosleh MA, Manssor H, Malek S, Milow P, Salleh A
    BMC Bioinformatics, 2012;13 Suppl 17:S25.
    PMID: 23282059 DOI: 10.1186/1471-2105-13-S17-S25
    Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap.
    Matched MeSH terms: Cyanobacteria/classification*; Cyanobacteria/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links