Displaying publications 1 - 20 of 105 in total

Abstract:
Sort:
  1. Ariff N, Abdullah A, Azmai MNA, Musa N, Zainathan SC
    Vet World, 2019 Aug;12(8):1273-1284.
    PMID: 31641308 DOI: 10.14202/vetworld.2019.1273-1284
    Background and Aim: Viral nervous necrosis (VNN) is a serious disease of several marine fish species. VNN causes 100% mortality in the larval stages, while lower losses have been reported in juvenile and adult fish. This study aimed to detect the occurrence of VNN while identifying its associated risk factors and the genotypes of its causative agent in a hybrid grouper hatchery in Malaysia.

    Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus × Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors.

    Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage.

    Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain.

    Matched MeSH terms: Databases, Nucleic Acid
  2. Azlan NDK, Isa MNM, Zainal Z
    Data Brief, 2017 Oct;14:548-550.
    PMID: 28861452 DOI: 10.1016/j.dib.2017.07.064
    Garcinia mangostana is a tropical fruit plant rich in antioxidant and bears recalcitrant seeds. The extent of water loss and low temperature tolerable by recalcitrant seed varies from regular orthodox seeds. Present study generates transcriptome resources for G. mangostana to postulate potential transcriptome differences between recalcitrant and orthodox seeds during seed germination process. Raw reads of pooled samples used for the assembly have been deposited in genbank accession SRR5412332.
    Matched MeSH terms: Databases, Nucleic Acid
  3. Siew GY, Ng WL, Tan SW, Alitheen NB, Tan SG, Yeap SK
    PeerJ, 2018;6:e4266.
    PMID: 29511604 DOI: 10.7717/peerj.4266
    Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity,H
    E
     = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10-3. Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.
    Matched MeSH terms: Databases, Nucleic Acid
  4. Almaliky BSA, Abidin MAZ, Kader J, Wong MY
    Plant Dis, 2013 Jan;97(1):143.
    PMID: 30722276 DOI: 10.1094/PDIS-07-12-0627-PDN
    In April and June 2010, coconut seedlings with symptoms of very slow growth, yellowing of leaves, and general abnormal leaf growth were observed in germination beds in Teluk Intan, Perak, Malaysia. The roots were soft, rotten, and brown, extending upward and downward from these lesions. Rhizomorphs and basidiocarps were produced on coconut seeds near the germination eye and identified as Marasmiellus palmivorus according description by Turner (2). Three isolates were obtained by plating surface sterilized symptomatic roots and basidiocarp on malt extract agar (MEA) amended with 85% lactic acid (1 ml added to 11 of the medium). To confirm the identity of the fungus, genomic DNA was extracted from mycelia and basidiocarps of isolates and the large subunit (LSU) region was amplified and sequenced using LR0R/LR7 primers (3). All isolates had identical LSU sequences (GenBank Accession No. JQ654233 to JQ654235). Sequences were identical to each other and 99% similar to a M. palmivorus sequence deposited in the NCBI database (Accession No. AY639434).To confirm pathogenicity, three isolates of M. palmivorus that were obtained from symptomatic plant tissue was inoculated onto seeds of Malaysian Red Dwarf variety. Each isolate was grown in 100 ml of malt extract broth in 250 ml Erlenmeyer flasks and incubated at 27 ± 2°C for 5 days on an orbital shaker (125 rpm). The resulting culture was passed through two layers of sterile cloth. Mycelial suspension was obtained by blending mycelia in 100 ml of sterile water. Seeds were sterilized by soaking in 10% v/v sodium hypochlorite in distilled water for 3 min. The seeds were then rinsed three times over running tap water. The calyx portion of the seed was removed and five holes were made around the germination eye. The seeds were inoculated by injecting 2 ml of suspension into each hole. The control seeds were inoculated with sterile distilled water only. The seeds were transferred to 40-cm diameter plastic pots containing a mixture of sand, soil, and peat in the ratio of 3:2:1, respectively, and steam treated at 100°C for 1.5 h. Pots were placed in the glasshouse with normal exposures to day-night cycles, temperatures of 29 ± 4°C, and high relative humidity (85 to 95%) achieved by spraying water twice daily. After 2 months, 75% of the inoculated seeds failed to germinate. It was speculated that the artificial inoculum was higher than under germination bed conditions. Rhizomorphs and basidiocarps were produced on husk seeds near the germination eye. Seedlings that emerged successfully developed symptoms similar to those observed in the germination bed. No symptoms developed in the noninoculated seeds and seedlings. At 80 days post inoculation, basidiocarps were observed emerging from three diseased seedlings near the germination eye. Three reisolations were made on MEA from root lesions surface sterilized. Pathogenicity tests and LSU sequence analyses indicated that M. palmivorus is the causal agent of the symptoms observed on coconut seedlings. M. palmivorus was first recorded on coconuts and oil palm in the 1920s (1) and attacks the fruit and the petiole on oil palm (2). To our knowledge, this is the first report of M. palmivorus causing post-emergence damping off on coconut seedlings. References: (1) K. G. Singh. A check-list of host and diseases in Malaysia. Ministry of Agriculture and Fisheries, Malaysia, 1973. (2) P. D. Turner. Oil palm diseases and disorders. Oxford University Press. 1981. (3) R. Vilgalys et al. J. Bacteriol. 172:4238, 1990.
    Matched MeSH terms: Databases, Nucleic Acid
  5. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: Databases, Nucleic Acid
  6. Coetzee MP, Wingfield BD, Bloomer P, Ridley GS, Wingfield MJ
    Mycologia, 2003 Mar-Apr;95(2):285-93.
    PMID: 21156614
    Armillaria root rot is a serious disease, chiefly of woody plants, caused by many species of Armillaria that occur in temperate, tropical and subtropical regions of the world. Very little is known about Armillaria in South America and Southeast Asia, although Armillaria root rot is well known in these areas. In this study, we consider previously unidentified isolates collected from trees with symptoms of Armillaria root rot in Chile, Indonesia and Malaysia. In addition, isolates from basidiocarps resembling A. novae-zelandiae and A. limonea, originating from Chile and Argentina, respectively, were included in this study because their true identity has been uncertain. All isolates in this study were compared, based on their similarity in ITS sequences with previously sequenced Armillaria species, and their phylogenetic relationship with species from the Southern Hemisphere was considered. ITS sequence data for Armillaria also were compared with those available at GenBank. Parsimony and distance analyses were conducted to determine the phylogenetic relationships between the unknown isolates and the species that showed high ITS sequence similarity. In addition, IGS-1 sequence data were obtained for some of the species to validate the trees obtained from the ITS data set. Results of this study showed that the ITS sequences of the isolates obtained from basidiocarps resembling A. novae-zelandiae are most similar to those for this species. ITS sequences for isolates from Indonesia and Malaysia had the highest similarity to A. novae-zelandiae but were phylogenetically separated from this species. Isolates from Chile, for which basidiocarps were not found, were similar in their ITS and IGS-1 sequences to the isolate from Argentina that resembled A. limonea. These isolates, however, had the highest ITS and IGS-1 sequence similarity to authentic isolates of A. luteobubalina and were phylogenetically more closely related to this species than to A. limonea.
    Matched MeSH terms: Databases, Nucleic Acid
  7. Axtner J, Crampton-Platt A, Hörig LA, Mohamed A, Xu CCY, Yu DW, et al.
    Gigascience, 2019 Apr 01;8(4).
    PMID: 30997489 DOI: 10.1093/gigascience/giz029
    BACKGROUND: The use of environmental DNA for species detection via metabarcoding is growing rapidly. We present a co-designed lab workflow and bioinformatic pipeline to mitigate the 2 most important risks of environmental DNA use: sample contamination and taxonomic misassignment. These risks arise from the need for polymerase chain reaction (PCR) amplification to detect the trace amounts of DNA combined with the necessity of using short target regions due to DNA degradation.

    FINDINGS: Our high-throughput workflow minimizes these risks via a 4-step strategy: (i) technical replication with 2 PCR replicates and 2 extraction replicates; (ii) using multi-markers (12S,16S,CytB); (iii) a "twin-tagging," 2-step PCR protocol; and (iv) use of the probabilistic taxonomic assignment method PROTAX, which can account for incomplete reference databases. Because annotation errors in the reference sequences can result in taxonomic misassignment, we supply a protocol for curating sequence datasets. For some taxonomic groups and some markers, curation resulted in >50% of sequences being deleted from public reference databases, owing to (i) limited overlap between our target amplicon and reference sequences, (ii) mislabelling of reference sequences, and (iii) redundancy. Finally, we provide a bioinformatic pipeline to process amplicons and conduct PROTAX assignment and tested it on an invertebrate-derived DNA dataset from 1,532 leeches from Sabah, Malaysia. Twin-tagging allowed us to detect and exclude sequences with non-matching tags. The smallest DNA fragment (16S) amplified most frequently for all samples but was less powerful for discriminating at species rank. Using a stringent and lax acceptance criterion we found 162 (stringent) and 190 (lax) vertebrate detections of 95 (stringent) and 109 (lax) leech samples.

    CONCLUSIONS: Our metabarcoding workflow should help research groups increase the robustness of their results and therefore facilitate wider use of environmental and invertebrate-derived DNA, which is turning into a valuable source of ecological and conservation information on tetrapods.

    Matched MeSH terms: Databases, Nucleic Acid*
  8. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PeerJ, 2018;6:e4572.
    PMID: 29607265 DOI: 10.7717/peerj.4572
    Background: Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat,Eonycteris spelaea, is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet ofE. spelaearelied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat,E. spelaea,roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding.

    Methods: Faeces were collected under the roost ofE. spelaeaonce a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified atITS2andrbcLregions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification.

    Results: A total of 55 species of plants were detected from faeces ofE. spelaeaincludingArtocarpus heterophyllus, Duabanga grandifloraandMusaspp. which are likely to be important food resources for the cave nectar bat.

    Discussion: Many native plant species that had not been reported in previous dietary studies ofE. spelaeawere detected in this study includingBauhinia strychnoideaandUrophyllum leucophlaeum, suggesting thatE. spelaearemains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates thatE. spelaeaare exploiting them, particularlyXanthostemon chrysanthus,as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting thatE. spelaeafeed predominantly on the crops particularly jackfruit and banana and play a significant role in pollination of economically important plants. Ferns and figs were also detected in the faeces ofE. spelaeasuggesting future research avenues to determine whether the 'specialised nectarivorous'E. spelaeafeed opportunistically on other parts of plants.

    Matched MeSH terms: Databases, Nucleic Acid
  9. French-Monar RD, Patton AF, Douglas JM, Abad JA, Schuster G, Wallace RW, et al.
    Plant Dis, 2010 Apr;94(4):481.
    PMID: 30754480 DOI: 10.1094/PDIS-94-4-0481A
    In August 2008, 30% of tomato (Solanum lycopersicum) plants in plots in Lubbock County, Texas showed yellowing, lateral stem dieback, upward leaf curling, enlargement of stems, adventitious roots, and swollen nodes. Yellowing in leaves was similar to that seen with zebra chip disease (ZC) of potato that was confirmed in a potato field 112 km away in July 2008 and was associated with a 'Candidatus Liberibacter' species (1), similar to findings earlier in 2008 in New Zealand and California (2,3). Tissue from four symptomatic plants of cv. Spitfire and two of cv. Celebrity were collected and DNA was extracted from midribs and petioles with a FastDNA Spin Kit (Qbiogene, Inc., Carlsbad, CA,). PCR amplification was done with 16S rRNA gene primers OA2 and OI2c, which are specific for "Ca. Liberibacter solanacearum" from potato and tomato and amplify a 1.1-kb fragment of the 16S rRNA gene of this new species (1,3). Amplicons of 1.1 kb were obtained from all samples and these were sequenced in both orientations (McLab, San Francisco, CA). Sequences of the 16S rRNA gene were identical for both Spitfire and Celebrity and were submitted to the NCBI as GenBank Accession Nos. FJ939136 and FJ939137, respectively. On the basis of a BLAST search, sequence alignments revealed 99.9% identity with a new species of 'Ca. Liberibacter' from potato (EU884128 and EU884129) in Texas (1); 99.7% identity with the new species "Ca. Liberibacter solanacearum" described from potato and tomato (3) in New Zealand (EU849020 and EU834130, respectively) and from the potato psyllid Bactericera cockerelli in California (2) (EU812559, EU812556); 97% identity with 'Ca L. asiaticus' from citrus in Malaysia (EU224393) and 94% identity with both 'Ca. L. africanus' and 'Ca. L. americanus' from citrus (EU921620 and AY742824, respectively). A neighbor-joining cladogram constructed using the 16S rRNA gene fragments delineated four clusters corresponding to each species, and these sequences clustered with "Ca. L. solanacearum". A second PCR analysis was conducted with the CL514F/CL514R primer pair, which amplifies a sequence from the rplJ and rplL ribosomal protein genes of "Ca. L. solanacearum". The resulting 669-bp products were 100% identical to a sequence reported from tomato in Mexico (FJ498807). This sequence was submitted to NCBI (GU169328). ZC, a disease causing losses to the potato industry, is associated with a 'Candidatus Liberibacter' species (1-3) and was reported in Central America and Mexico in the 1990s, in Texas in 2000, and more recently in other states in the United States (4). In 2008, a "Ca. Liberibacter solanacearum" was detected on Capsicum annuum, S. betaceum, and Physalis peruviana in New Zealand (3). Several studies have shown that the potato psyllid, B. cockerelli, is a potential vector for this pathogen (2,4). To our knowledge, this is the first report of "Ca. Liberibacter solanacearum" in field tomatoes showing ZC-like foliar disease symptoms in the United States. References: (1). J. A. Abad et al. Plant Dis. 93:108, 2009 (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 93:208, 2009. (4) G. A. Secor et al. Plant Dis. 93:574, 2009.
    Matched MeSH terms: Databases, Nucleic Acid
  10. Tan WC, Lim SJ, Wan Aida Wan Mustapha
    Sains Malaysiana, 2017;46:439-448.
    Dalam kajian ini, bakteria asid laktik (LAB) serta sebatian aroma ikan pekasam daripada spesies yang berbeza
    ditentukan. Persampelan ikan pekasam iaitu tilapia, loma, lampam, sepat dan gelama diperoleh daripada pembekal
    Perusahaan Ikan Pekasam Kiah di Kuala Kangsar, Perak. Penentuan spesies LAB dijalankan melalui kaedah pencairan
    bersiri, pengkulturan LAB, ujian katalase, ujian pewarnaan spora serta ujian pengesanan Gram bakteria dan morfologi.
    Pengesahan spesies LAB dijalankan melalui pengekstrakan asid deoksiribonukleik (DNA), amplifikasi dengan tindak
    balas rantaian polimerasi (PCR), analisis elektroforesis gel dan penjujukan DNA. Hasil jujukan DNA yang diperoleh
    dibandingkan dengan jujukan dalam pangkalan data GenBank di NCBI menggunakan BLAST. Didapati Lactobacillus
    brevis KB290 DNA dan Lactobacillus casei W56 wujud dalam pekasam tilapia, Lactobacillus plantarum 16 dalam
    pekasam lampam, Lactobacillus casei BD-II kromosom dan Lactobacillus plantarum WCFS1 dalam pekasam sepat,
    Corynebacterium vitaeruminis DSM 20294 dan Streptococcus anginosus C1051 dalam pekasam gelama. Manakala
    Staphylococcus carnosus subsp. carnosus TM300 kromosom adalah LAB dominan dalam pekasam loma. Sementara
    itu, sebatian aroma ditentukan melalui kaedah pengekstrakan cecair menggunakan pelarut metanol dan heksana.
    Pemprofilan sebatian aroma dijalankan dengan kromatografi gas-spektometer jisim (GC-MS). Sebatian aroma dalam
    ekstrak metanol dan heksana daripada lima jenis ikan pekasam dibandingkan. Bilangan sebatian aroma yang diekstrak
    menggunakan metanol adalah lebih banyak berbanding dengan yang menggunakan heksana. Sebatian aroma yang
    paling banyak dikesan adalah daripada pekasam loma. Asid karboksilik merupakan sebatian yang paling dominan
    dalam ikan pekasam dan memberi bau hamis serta tengik.
    Matched MeSH terms: Databases, Nucleic Acid
  11. Wong ML, Ahmed MA, Sulaiman WYW, Manin BO, Leong CS, Quan FS, et al.
    Infect Genet Evol, 2019 09;73:26-32.
    PMID: 30999059 DOI: 10.1016/j.meegid.2019.04.010
    We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.
    Matched MeSH terms: Databases, Nucleic Acid
  12. Naderali N, Nejat N, Tan YH, Vadamalai G
    Plant Dis, 2013 Nov;97(11):1504.
    PMID: 30708488 DOI: 10.1094/PDIS-04-13-0412-PDN
    The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV 'Candidatus Phytoplasma cynodontis' group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the 'Candidatus Phytoplasma asteris' 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.
    Matched MeSH terms: Databases, Nucleic Acid
  13. Sulaiman R, Thanarajoo SS, Kadir J, Vadamalai G
    Plant Dis, 2012 May;96(5):767.
    PMID: 30727556 DOI: 10.1094/PDIS-06-11-0482-PDN
    Physic nut (Jatropha curcas L.) is an important biofuel crop worldwide. Although it has been reported to be resistant to pests and diseases (1), stem cankers have been observed on this plant at several locations in Peninsular Malaysia since early February 2008. Necrotic lesions on branches appear as scars with vascular discoloration in the tissue below the lesion. The affected area is brownish and sunken in appearance. Disease incidence of these symptomatic nonwoody plants can reach up to 80% in a plantation. Forty-eight samples of symptomatic branches collected from six locations (University Farm, Setiu, Gemenceh, Pulau Carey, Port Dickson, and Kuala Selangor) were surface sterilized in 10% bleach, rinsed twice with sterile distilled water, air dried on filter paper, and plated on water agar. After 4 days, fungal colonies on the agar were transferred to potato dextrose agar (PDA) and incubated at 25°C. Twenty-seven single-spore fungal cultures obtained from all locations produced white, aerial mycelium that became dull gray after a week in culture. Pycnidia from 30-day-old pure cultures produced dark brown, oval conidia that were two celled, thin walled, and oval shape with longitudinal striations. The average size of the conidia was 23.63 × 12.72 μm with a length/width ratio of 1.86. On the basis of conidial morphology, these cultures were identified as Lasiodiplodia theobromae. To confirm the identity of the isolates, the internal transcribed spacer (ITS) region was amplified with ITS1/ITS4 primers and sequenced. The sequences were deposited in GenBank (Accession Nos. HM466951, HM466953, HM466957, GU228527, HM466959, and GU219983). Sequences from the 27 isolates were 99 to 100% identical to two L. theobromae accessions in GenBank (Nos. HM008598 and HM999905). Hence, both morphological and molecular characteristics confirmed the isolates as L. theobromae. Pathogenicity tests were performed in the glasshouse with 2-month-old J. curcas seedlings. Each plant was wound inoculated by removing the bark on a branch to a depth of 2 mm with a 10-mm cork borer. Inoculation was conducted by inserting a 10-mm-diameter PDA plug of mycelium into the wound and wrapping the inoculation site with wetted, cotton wool and Parafilm. Control plants were treated with plugs of sterile PDA. Each isolate had four replicates and two controls. After 6 days of incubation, all inoculated plants produced sunken, necrotic lesions with vascular discoloration. Leaves were wilted and yellow above the point of inoculation on branches. The control plants remained symptomless. The pathogen was successfully reisolated from lesions on inoculated branches. L. theobromae has been reported to cause cankers and dieback in a wide range of hosts and is common in tropical and subtropical regions of the world (2,3). To our knowledge, this is the first report of stem canker associated with L. theobromae on J. curcas in Malaysia. References: (1) S. Chitra and S. K. Dhyani. Curr. Sci. 91:162, 2006. (2) S. Mohali et al. For. Pathol. 35:385, 2005. (3) E. Punithalingam. Page 519 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, Surrey, UK. 1976.
    Matched MeSH terms: Databases, Nucleic Acid
  14. Tan LK, Mohd-Farid B, Salsabil S, Heselynn H, Wahinuddin S, Lau IS, et al.
    Hum Immunol, 2016 Oct;77(10):818-819.
    PMID: 27370684 DOI: 10.1016/j.humimm.2016.06.022
    A total of 951 Southeast Asia Malays from Peninsular Malaysia were genotyped for HLA-A, -B, -C -DRB1, and -DQB1 loci using polymerase chain reaction sequence-specific oligonucleotide probe hybridization methods. In this report, there were significant deviation from Hardy-Weinberg proportions for the HLA-A (p<0.0001), -B (p<0.0001), -DRB1 (p<0.0001) and -DQB1 (p<0.01) loci. Minor deviations from HWEP were detected for HLA-C (p=0.01). This genotype data was available in Allele Frequencies Network Database (AFND) Gonzalez-Galarza et al. (2015).
    Matched MeSH terms: Databases, Nucleic Acid
  15. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Databases, Nucleic Acid
  16. Zulkefli NJ, Mariappan V, Vellasamy KM, Chong CW, Thong KL, Ponnampalavanar S, et al.
    PeerJ, 2016;4:e1802.
    PMID: 26998408 DOI: 10.7717/peerj.1802
    Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters. Hierarchical clustering using UniFrac distance suggested that the isolates from Australia were genetically distinct from the Asian isolates. Nevertheless, statistical significant differences were detected between isolates from Malaysia, Thailand and Australia. Discussion. Overall, PFGE showed higher discriminative power in clustering the nine Malaysian B. pseudomallei isolates and indicated its suitability for localized epidemiological study. Compared to MLST, CIM genes showed higher resolution in distinguishing those non-related strains and better clustering of strains from different geographical regions. A closer genetic relatedness of Malaysian isolates with all Asian strains in comparison to Australian strains was observed. This finding was supported by UniFrac analysis which resulted in geographical segregation between Australia and the Asian countries.
    Matched MeSH terms: Databases, Nucleic Acid
  17. LIEW YOU EN, SALWANI ABDULLAH, TAN MIN PAU, MAZLAN ABD GHAFFAR, ALIAS MAN, TUN NURUL AIMI MAT JAAFAR
    MyJurnal
    DNA Barcoding, primarily focusing on cytochrome coxidase subunit I (COI) gene has been appraised as an effective tool for species identification. Nonetheless, species identification based on molecular approach is essential for discrimination of look-alike species. In this study, we focused on the marine fishes Family Nemipteridae, one of the commercially important group distributed within the surrounding seas of Malaysia. Some of the samples were collected during the National Demersal Trawl Survey in the Exclusive Economic Zone of East Coast Peninsular Malaysia by the Department of Fishery Malaysia. A 652bp region of COI was sequenced for 74 individuals from nine putative species. Additional 34 COIsequences from GenBank were also included in this study making the total number of samples analysed to 108 individuals. The averageKimura 2-parameter (K2P) nucleotide divergence was 0.34% among individuals within species and 6.97% within genera. All putative species formed monophyletic clades in both Neighbour-joining (NJ) and Maximum-likelihood (ML) trees. However, there was a potential misidentification in specimen identified as Nemipterus tambuloides,as the specimen did not group with their own taxa. It was genetically grouped in Nemipterus thosaporni clade. This study supports the effectiveness of COIgene in species discrimination of Family Nemipteridae.
    Matched MeSH terms: Databases, Nucleic Acid
  18. Borzák R, Borkhanuddin MH, Cech G, Molnár K, Hallett SL, Székely C
    Int J Parasitol Parasites Wildl, 2021 Aug;15:112-119.
    PMID: 33996443 DOI: 10.1016/j.ijppaw.2021.04.004
    Thelohanellus nikolskii, Achmerov, 1955 is a well-known myxozoan parasite of the common carp (Cyprinus carpio L.). Infection regularly manifests in numerous macroscopic cysts on the fins of two to three month-old pond-cultured carp fingerlings in July and August. However, a Thelohanellus infection is also common on the scales of two to three year-old common carp in ponds and natural waters in May and June. Based on myxospore morphology and tissue specificity, infection at both sites seems to be caused by the same species, namely T. nikolskii. This presumption was tested with molecular biological methods: SSU rDNA sequences of myxospores from fins of fingerlings and scales of older common carp were analysed and compared with each other and with related species available in GenBank. Sequence data revealed that the spores from the fins and scales represent the same species, T. nikolskii. Our study revealed a dichotomy in both infection site and time in T. nikolskii-infections: the fins of young carp are infected in Summer and Autumn, whereas the scales of older carp are infected in Spring. Myxosporean development of the species is well studied, little is known, however about the actinosporean stage of T. nikolskii. A previous experimental study suggests that aurantiactinomyxon actinospores of this species develop in Tubifex tubifex, Müller, 1774. The description included spore morphology but no genetic sequence data (Székely et al., 1998). We examined >9000 oligochaetes from Lake Balaton and Kis-Balaton Water Reservoire searching for the intraoligochaete developmental stage of myxozoans. Five oligochaete species were examined, Isochaetides michaelseni Lastochin, 1936, Branchiura sowerbyi Beddard, 1892, Nais sp., Müller, 1774, Dero sp. Müller, 1774 and Aelosoma sp. Ehrenberg, 1828. Morphometrics and SSU rDNA sequences were obtained for the released actinospores. Among them, from a single Nais sp., the sequence of an aurantiactinomyxon isolate corresponded to the myxospore sequences of T. nikolskii.
    Matched MeSH terms: Databases, Nucleic Acid
  19. Borkhanuddin MH, Goswami U, Cech G, Molnár K, Atkinson SD, Székely C
    Food Waterborne Parasitol, 2020 Sep;20:e00092.
    PMID: 32995584 DOI: 10.1016/j.fawpar.2020.e00092
    This study was a co-operative investigation of myxosporean infections of Notopterus notopterus, the bronze featherback, which is a popular food fish in the South Asian region. We examined fish from Lake Kenyir, Malaysia and the River Ganga, Hastinapur, Uttar Pradesh, India, and observed infections with two myxosporeans: Myxidium cf. notopterum (Myxidiidae) and Henneguya ganapatiae (Myxobolidae), respectively. These species were identified by myxospore morphology, morphometry and host tissue affinity, and the original descriptions supplemented with small-subunit ribosomal DNA sequences and phylogenetic analysis. Free myxospores of M. cf. notopterum were found in the gallbladder, and measured 14.7 ± 0.6 μm long and 6.3 ± 0.6 μm wide; host, tissue and myxospore dimensions overlapped with the type, but differed in morphological details (spore shape, valve cell ridges) and locality (Malaysia versus India). Plasmodia and spores of H. ganapatiae were observed in gills, and myxospores had a spore body 9.7 ± 0.4 μm long, 4.5 ± 0.5 μm wide; sample locality, host, tissue, spore morphology and morphometry matched the original description. Small-subunit ribosomal DNA sequences were deposited in GenBank (M. cf. notopterum MT365527, H. ganapatiae MT365528) and both differed by >7% from congeneric species. Although the pathogenicity and clinical manifestation of myxozoan in humans are poorly understood, consumption of raw fish meat with myxozoan infection was reported to be associated with diarrhea. Identification of current parasite fauna from N. notopterus is an essential first step in assessing pathogen risks to stocks of this important food fish.
    Matched MeSH terms: Databases, Nucleic Acid
  20. Kamarudin KR, Ngah N, Hamid TH, Susanti D
    Trop Life Sci Res, 2013 Aug;24(1):85-100.
    PMID: 24575244
    Staphylococcus kloosii, an orange pigment-producing bacterium, was isolated from the respiratory tree of Holothuria (Mertensiothuria) leucospilota (Brandt 1835) from Teluk Nipah, Pangkor Island, Perak, Malaysia. This report is the first documentation of this Gram-positive strain, referred to as Strain 68 in Malaysia. A partial 16S ribosomal RNA gene sequence of the mesophilic strain has been registered with GenBank (National Center for Biotechnology Information, US National Library of Medicine) with accession number JX102547. Phylogenetic analysis using the neighbour-joining method further supported the identification of Strain 68 as S. kloosii. The circular strain produced orange pigments on tryptone glucose yeast extract agar (TGYEA) and in nutrient broth (NB) at approximately pH 7. The visible spectra of ethanolic and methanolic pigment extracts of the bacterial strain were considered identical with λmax at 426, 447 and 475 nm and λmax at 426, 445 and 473 nm, respectively. Both visible spectra resemble the visible spectra of lutein, which is a commercial carotenoid; however, further analyses are required to confirm the identity of this pigment. The methanolic extracts of the intracellular pigments comprised at least three pigment compounds: an orange pigment compound (major compound), a yellow pigment compound (the least polar) and a pink pigment compound (the most polar). These findings are the first documentation of the pigment composition of S. kloosii as no such record could be found to date.
    Matched MeSH terms: Databases, Nucleic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links