Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Armenia A, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Acta Pharmacol Sin, 2008 May;29(5):564-72.
    PMID: 18430364 DOI: 10.1111/j.1745-7254.2008.00788.x
    This study investigates the subtypes of the alpha1-adrenoceptor mediating the adrenergically-induced renal vasoconstrictor responses in streptozotocin-induced diabetic and non-diabetic 2-kidney one clip (2K1C) Goldblatt hypertensive rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  2. Hong YH, Betik AC, Premilovac D, Dwyer RM, Keske MA, Rattigan S, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 May 15;308(10):R862-71.
    PMID: 25786487 DOI: 10.1152/ajpregu.00412.2014
    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  3. Armenia, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Auton Autacoid Pharmacol, 2008 Jan;28(1):1-10.
    PMID: 18257746 DOI: 10.1111/j.1474-8673.2007.00412.x
    1 The present study investigated the effect of streptozotocin-induced diabetes on alpha(1)-adrenoceptor subtypes in rat renal resistance vessels. 2 Studies on renal haemodynamics were carried out 7 days after the last streptozotocin. Changes in renal blood flow were recorded in response to electrical stimulation of the renal nerve (RNS) and a range of adrenergic agonists; noradrenaline (NA), phenylephrine (PE) and methoxamine (MTX), either in the absence or the presence of nitrendipine (Nit), 5-methylurapidil (MEU), chlorethylclonidine (CEC) or BMY 7378. 3 In non-diabetic animals, Nit, MEU and BMY 7378 significantly attenuated renal vasoconstriction induced by adrenergic agonists, while CEC showed a significant accentuation in RNS-induced responses without having a significant effect on responses to adrenergic agonists. In diabetic rats, renal vasoconstriction was also significantly reduced in Nit-, MEU- and BMY 7378-treated groups and CEC potentiated RNS-induced contractions caused a change similar to that observed in non-diabetic rats. BMY 7378 significantly (P < 0.05) attenuated the PE- and MTX-induced vasoconstrictions but did not cause any significant (P > 0.05) alteration in the RNS- and NA-induced responses. 4 The results showed functional co-existence of alpha(1A)- and alpha(1D)-adrenoceptors in the renal vasculature of SD rats irrespective of the presence of diabetes. A possible minor contribution of prejunctional alpha-adrenoceptor subtype has also been suggested in either experimental group, particularly possible functional involvement of alpha(1B)-adrenoceptor subtypes in non-diabetic SD rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  4. Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, et al.
    Bone, 2016 06;87:102-13.
    PMID: 27062994 DOI: 10.1016/j.bone.2016.04.001
    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  5. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  6. Teoh SL, Latiff AA, Das S
    Clin Exp Dermatol, 2009 Oct;34(7):815-22.
    PMID: 19508570 DOI: 10.1111/j.1365-2230.2008.03117.x
    Momordica charantia (MC; bitter gourd) is a traditional herb commonly used for its antidiabetic, antioxidant, contraceptive and antibacterial properties. It is also used for the rapid healing of wounds.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  7. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  8. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  9. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  10. Alsalahi A, Alshawsh MA, Chik Z, Mohamed Z
    Exp Anim, 2018 Nov 01;67(4):517-526.
    PMID: 29973470 DOI: 10.1538/expanim.18-0057
    People consume Catha edulis (khat) for its euphoric effect, and type 1 diabetics have claimed that khat could reduce elevated levels of blood sugar. However, khat has been suggested to provoke diabetes mellitus through destruction of pancreatic β-cells. This study investigated the effect of an ethanolic khat extract on pancreatic functions in type 1 diabetes (T1DM)-induced male Sprague-Dawley rats and to assess its in vitro cytotoxicity in rat pancreatic β-cells (RIN-14B). T1DM was induced in a total of 20 rats with a single intraperitoneal injection of 75 mg/kg of streptozotocin. The rats were distributed into four groups (n=5): the diabetic control, 8 IU insulin-treated, 200 mg/kg khat-treated, and 400 mg/kg khat-treated groups. Another 5 rats were included as a nondiabetic control. Body weight, fasting blood sugar, and caloric intake were recorded weekly. Four weeks after treatment, the rats were sacrificed, and blood was collected for insulin, lipid profile, total protein, amylase, and lipase analysis, while pancreases were harvested for histopathology. In vitro, khat exerted moderate cytotoxicity against RIN-14B cells after 24 and 48 h but demonstrated greater inhibition against RIN-14B cells after 72 h. Neither 200 mg/kg nor 400 mg/kg of khat produced any significant reduction in blood sugar; however, 200 mg/kg khat extract provoked more destruction of pancreatic β-cells as compared with the diabetic control. Ultimately, neither 200 mg/kg nor 400 mg/kg of khat extract could produce a hypoglycemic effect in T1DM-induced rats. However, 200 mg/kg of khat caused greater destruction of pancreatic β-cells, implying that khat may cause a direct cytotoxic effect on pancreatic β-cells in vitro.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  11. Sharma JN, Kesavarao U
    Immunopharmacology, 1996 Jun;33(1-3):341-3.
    PMID: 8856181 DOI: 10.1016/0162-3109(96)00104-x
    This study examined the effects of streptozotocin-induced diabetes on blood pressure and cardiac tissue kallikrein levels in WKYR and SHR. Streptozotocin-induced diabetes caused significant (p < 0.001) increase in SBP and DBP in WKYR and SHR as compared with their respective controls. We also observed that the active cardiac tissue kallikrein levels reduced greatly (p < 0.001) in diabetic WKYR and SHR than the normal rats. These findings suggest for the first time that the cardiac tissue kallikrein formation may have a greater role in the regulation of blood pressure and cardiac function.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  12. Sharma JN, Uma K, Yusof AP
    Int J Cardiol, 1998 Feb 28;63(3):229-35.
    PMID: 9578349 DOI: 10.1016/s0167-5273(97)00329-x
    We investigated the cardiac tissue kallikrein and kininogen levels, left ventricular wall thickness and mean arterial blood pressure of Wistar Kyoto and spontaneously hypertensive rats with and without streptozotocin-induced diabetes. The mean arterial blood pressure was highly elevated (P<0.001) in Wistar Kyoto diabetic and spontaneously hypertensive diabetic rats as compared with their respective controls. The cardiac tissue kallikrein and kininogen levels were reduced significantly (P<0.001) in diabetic Wistar Kyoto, spontaneously hypertensive and diabetic spontaneously hypertensive compared with Wistar Kyoto control rats. In addition, the left ventricular thickness was found to be increased (P<0.001) in diabetic Wistar Kyoto and spontaneously hypertensive rats in the presence and in the absence of diabetes. Our results indicate that reduced activity of the kinin-forming system may be responsible for inducing left ventricular hypertrophy in the presence of raised mean arterial blood pressure in diabetic and hypertensive rats. Thus, the kinin-forming components might have a protective role against the development of left ventricular hypertrophy. The possible significance of these findings is discussed.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  13. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al.
    J Cell Physiol, 2015 Dec;230(12):3009-18.
    PMID: 26016732 DOI: 10.1002/jcp.25033
    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  14. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    J Nephrol, 2010 5 4;24(1):68-77.
    PMID: 20437405 DOI: 10.5301/jn.2010.6
    BACKGROUND: Renal sympathetic innervation plays an important role in the control of renal hemodynamics and may therefore contribute to the pathophysiology of many disease states affecting the kidney. Thus, the present study aimed to investigate the role of the renal sympathetic nervous system in the early deteriorations of renal hemodynamics and structure in rats with pathophysiological states of renal impairment.

    METHODS: Anesthetized Sprague Dawley (SD) rats with cisplatin-induced acute renal failure (ARF) or streptozotocin (STZ)-induced diabetes mellitus (DM) were subjected to a renal hemodynamic study 7 days after cisplatin and STZ administration. During the acute study, renal nerves were electrically stimulated, and responses in renal blood flow (RBF) and renal vascular resistance (RVR) were recorded in the presence and absence of renal denervation. Post mortem kidney collection was performed for histopathological assessment.

    RESULTS: In innervated ARF or DM rats, renal nerve stimulation produced significantly lower (all p<0.05, vs. innervated control) renal vasoconstrictor responses. These responses were markedly abolished when renal denervation was performed (all p<0.05); however, they appeared significantly higher compared with denervated controls (all p<0.05). Kidney injury was suppressed in denervated ARF, while, irrespective of renal denervation, renal specimens from DM rats were comparable to controls.

    CONCLUSIONS: Renal sympathoexcitation is involved in the pathogenesis of the renal impairment accompanying ARF and DM, and may even precede the establishment of an observable renal injury. There is a possible enhancement in the renal sensitivity to intrarenal norepinephrine following renal denervation in ARF and DM rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  15. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  16. Lazahari MI, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Methods Find Exp Clin Pharmacol, 2008 Apr;30(3):193-9.
    PMID: 18597003 DOI: 10.1358/mf.2008.30.3.1166221
    This study examined the sympathoinhibitory effects of clonidine and a novel clonidine analog, AL-12, in rat models of genetic hypertension and a combined state of genetic hypertension and diabetes. Rats in the treatment groups were given either clonidine or AL-12 while the respective control groups received either saline or Tween 80 for 6 days. Physiological data were collected during this period, which was followed by acute studies on day 7 when bolus administrations (i.v.) of graded doses of noradrenaline, phenylephrine and methoxamine were carried out. It was observed that in AL-12-treated nondiabetic spontaneously hypertensive rats (SHR), the pressure responses to all adrenergic agonists were greater (p < 0.05) in the treated group, while in the diabetic SHR rats a larger pressure response was observed only to noradrenaline (p < 0.05). In nondiabetic SHR rats treated with clonidine, a greater (p < 0.05) pressure response was observed only in the case of phenylephrine. In the diabetic SHR rats treated with clonidine, the pressure responses to the adrenergic agonists were similar (p > 0.05) in the treated and its control animals except that methoxamine caused a greater (p < 0.05) pressure response in the control group. The data obtained suggest that clonidine and AL-12 act possibly via vascular alpha1 and alpha2 adrenoceptors present at both pre- and postsynaptic locations.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  17. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Abdullah GZ, et al.
    Neurourol Urodyn, 2011 Mar;30(3):438-46.
    PMID: 21284025 DOI: 10.1002/nau.21007
    We assessed the role of renal sympathetic nervous system in the deterioration of renal hemodynamic and excretory functions in rats with streptozotocin (STZ)-induced diabetic kidney disease (DKD).
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  18. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  19. Wong TW, Sumiran N, Mokhtar MT, Kadir A
    Pharm Biol, 2012 Nov;50(11):1463-6.
    PMID: 22889006 DOI: 10.3109/13880209.2012.679985
    In oral insulin delivery, blood glucose profiles of a subject can be a function of complicated transfer of water and insulin between gastrointestinal and blood compartments.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology
  20. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links