Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Al-Amshawee SKA, Yunus MYBM
    Environ Res, 2023 Feb 15;219:115115.
    PMID: 36574794 DOI: 10.1016/j.envres.2022.115115
    The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.
    Matched MeSH terms: Electrochemistry/instrumentation; Electrochemistry/methods
  2. Karthikeyan C, Jenita Rani G, Ng FL, Periasamy V, Pappathi M, Jothi Rajan M, et al.
    Appl Biochem Biotechnol, 2020 Nov;192(3):751-769.
    PMID: 32557232 DOI: 10.1007/s12010-020-03352-4
    A facile chemical reduction approach is adopted for the synthesis of iron tungstate (FeWO4)/ceria (CeO2)-decorated reduced graphene oxide (rGO) nanocomposite. Surface morphological studies of rGO/FeWO4/CeO2 composite reveal the formation of hierarchical FeWO4 flower-like microstructures on rGO sheets, in which the CeO2 nanoparticles are decorated over the FeWO4 microstructures. The distinct anodic peaks observed for the cyclic voltammograms of studied electrodes under light/dark regimes validate the electroactive proteins present in the microalgae. With the cumulative endeavors of three-dimensional FeWO4 microstructures, phase effect between rGO sheet and FeWO4/CeO2, highly exposed surface area, and light harvesting property of CeO2 nanoparticles, the relevant rGO/FeWO4/CeO2 nanocomposite demonstrates high power and stable biophotovoltaic energy generation compared with those of previous reports. Thus, these findings construct a distinct horizon to tailor a ternary nanocomposite with high electrochemical activity for the construction of cost-efficient and environmentally benign fuel cells.
    Matched MeSH terms: Electrochemistry
  3. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
    Matched MeSH terms: Electrochemistry
  4. Chung HY, Pan GT, Hong ZY, Hsu CT, Chong S, Yang TC, et al.
    Molecules, 2020 Sep 04;25(18).
    PMID: 32899765 DOI: 10.3390/molecules25184050
    A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g-1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g-1 at 1 A g-1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g-1 at 1 A g-1 and a high energy density of 68.2 Wh kg-1 at a power density of 1 kW kg-1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g-1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.
    Matched MeSH terms: Electrochemistry
  5. Junaid M, Khir MHM, Witjaksono G, Tansu N, Saheed MSM, Kumar P, et al.
    Molecules, 2020 Aug 11;25(16).
    PMID: 32796504 DOI: 10.3390/molecules25163646
    Graphene and its hybrids are being employed as potential materials in light-sensing devices due to their high optical and electronic properties. However, the absence of a bandgap in graphene limits the realization of devices with high performance. In this work, a boron-doped reduced graphene oxide (B-rGO) is proposed to overcome the above problems. Boron doping enhances the conductivity of graphene oxide and creates several defect sites during the reduction process, which can play a vital role in achieving high-sensing performance of light-sensing devices. Initially, the B-rGO is synthesized using a modified microwave-assisted hydrothermal method and later analyzed using standard FESEM, FTIR, XPS, Raman, and XRD techniques. The content of boron in doped rGO was found to be 6.51 at.%. The B-rGO showed a tunable optical bandgap from 2.91 to 3.05 eV in the visible spectrum with an electrical conductivity of 0.816 S/cm. The optical constants obtained from UV-Vis absorption spectra suggested an enhanced surface plasmon resonance (SPR) response for B-rGO in the theoretical study, which was further verified by experimental investigations. The B-rGO with tunable bandgap and enhanced SPR could open up the solution for future high-performance optoelectronic and sensing applications.
    Matched MeSH terms: Electrochemistry/methods*
  6. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Electrochemistry
  7. Md Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, et al.
    Sensors (Basel), 2019 Nov 22;19(23).
    PMID: 31766637 DOI: 10.3390/s19235111
    A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.
    Matched MeSH terms: Electrochemistry/methods
  8. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Electrochemistry/instrumentation*
  9. Aziz SB, Abdulwahid RT, Hamsan MH, Brza MA, Abdullah RM, Kadir MFZ, et al.
    Molecules, 2019 Sep 27;24(19).
    PMID: 31569650 DOI: 10.3390/molecules24193508
    In this report, a facile solution casting technique was used to fabricate polymer blend electrolytes of chitosan (CS):poly (ethylene oxide) (PEO):NH4SCN with high electrochemical stability (2.43V). Fourier transform infrared (FTIR) spectroscopy was used to investigate the polymer electrolyte formation. For the electrochemical property analysis, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques were carried out. Referring to the FTIR spectra, a complex formation between the added salt and CS:PEO was deduced by considering the decreasing and shifting of FTIR bands intensity in terms of functional groups. The CS:PEO:NH4SCN electrolyte was found to be electrochemically stable as the applied voltage linearly swept up to 2.43V. The cyclic voltammogram has presented a wide potential window without showing any sign of redox peaks on the electrode surface. The proved mechanisms of charge storage in these fabricated systems were found to be double layer charging. The EIS analysis showed the existence of bulk resistance, wherein the semicircle diameter decreased with increasing salt concentration. The calculated maximum DC conductivity value was observed to be 2.11 × 10-4 S/cm for CS:PEO incorporated with 40 wt% of NH4SCN salt. The charged species in CS:PEO:NH4SCN electrolytes were considered to be predominantly ionic in nature. This was verified from transference number analysis (TNM), in which ion and electron transference numbers were found to be tion = 0.954 and tel = 0.045, respectively. The results obtained for both ion transference number and DC conductivity implied the possibility of fabricating electrolytes for electrochemical double layer capacitor (EDLC) device application. The specific capacitance of the fabricated EDLC was obtained from the area under the curve of the CV plot.
    Matched MeSH terms: Electrochemistry*
  10. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
    Matched MeSH terms: Electrochemistry
  11. Lim LL, Fu AWC, Lau ESH, Ozaki R, Cheung KKT, Ma RCW, et al.
    Nephrol Dial Transplant, 2019 Aug 01;34(8):1320-1328.
    PMID: 29939305 DOI: 10.1093/ndt/gfy154
    BACKGROUND: Early detection and risk factor control prevent chronic kidney disease (CKD) progression. Evaluation of peripheral autonomic dysfunction may detect incident cardiovascular-renal events in type 2 diabetes (T2D).

    METHODS: SUDOSCAN, a non-invasive tool, provides an age-adjusted electrochemical skin conductance (ESC) composite score incorporating hands/feet ESC measurements, with a score ≤53 indicating sudomotor dysfunction. A consecutive cohort of 2833 Chinese adults underwent structured diabetes assessment in 2012-13; 2028 participants without preexisting cardiovascular disease (CVD) and CKD were monitored for incident cardiovascular-renal events until 2015.

    RESULTS: In this prospective cohort {mean age 57.0 [standard deviation (SD) 10.0] years; median T2D duration 7.0 [interquartile range (IQR) 3.0-13.0] years; 56.1% men; 72.5% never-smokers; baseline ESC composite score 60.7 (SD 14.5)}, 163 (8.0%) and 25 (1.2%) participants developed incident CKD and CVD, respectively, after 2.3 years of follow-up. The adjusted hazard ratios (aHRs) per 1-unit decrease in the ESC composite score for incident CKD, CVD and all-cause death were 1.02 [95% confidence interval (CI) 1.01-1.04], 1.04 (1.00-1.07) and 1.04 (1.00-1.08), respectively. Compared with participants with an ESC composite score >53, those with a score ≤53 had an aHR of 1.56 (95% CI 1.09-2.23) for CKD and 3.11 (95% CI 1.27-7.62) for CVD, independent of common risk markers. When added to clinical variables (sex and duration of diabetes), the ESC composite score improved discrimination of all outcomes with appropriate reclassification of CKD risk.

    CONCLUSIONS: A low ESC composite score independently predicts incident cardiovascular-renal events and death in T2D, which may improve the screening strategy for early intervention.

    Matched MeSH terms: Electrochemistry
  12. Rahmani M, Ghafoorifard H, Afrang S, Ahmadi MT, Rahmani K, Ismail R
    IET Nanobiotechnol, 2019 Aug;13(6):584-592.
    PMID: 31432790 DOI: 10.1049/iet-nbt.2018.5288
    The response of trilayer graphene nanoribbon (TGN)-based ion-sensitive field-effect transistor (ISFET) to different pH solutions and adsorption effect on the sensing parameters are analytically studied in this research. The authors propose a TGN-based sensor to electrochemically detect pH. To this end, absorption effect on the sensing area in the form of carrier concentration, carrier velocity, and conductance variations are investigated. Also, the caused electrical response on TGN as a detection element is analytically proposed, in which significant current decrease of the sensor is observed after exposure to high pH values. In order to verify the accuracy of the model, it is compared with recent reports on pH sensors. The TGN-based pH sensor exposes higher current compared to that of carbon nanotube (CNT) counterpart for analogous ambient conditions. While, the comparative results demonstrate that the conductance of proposed model is lower than that of monolayer graphene-counterpart for equivalent pH values. The results confirm that the conductance of the sensor is decreased and Vg-min is obviously right-shifted by increasing value of pH. The authors demonstrate that although there is not the experimental evidence reported in the part of literature for TGN sensor, but the model can assist in comprehending experiments involving nanoscale pH sensors.
    Matched MeSH terms: Electrochemistry/instrumentation; Electrochemistry/methods
  13. Abbasi A, Hosseini S, Somwangthanaroj A, Mohamad AA, Kheawhom S
    Int J Mol Sci, 2019 Jul 26;20(15).
    PMID: 31357565 DOI: 10.3390/ijms20153678
    Rechargeable zinc-air batteries are deemed as the most feasible alternative to replace lithium-ion batteries in various applications. Among battery components, separators play a crucial role in the commercial realization of rechargeable zinc-air batteries, especially from the viewpoint of preventing zincate (Zn(OH)42-) ion crossover from the zinc anode to the air cathode. In this study, a new hydroxide exchange membrane for zinc-air batteries was synthesized using poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) as the base polymer. PPO was quaternized using three tertiary amines, including trimethylamine (TMA), 1-methylpyrolidine (MPY), and 1-methylimidazole (MIM), and casted into separator films. The successful synthesis process was confirmed by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy, while their thermal stability was examined using thermogravimetric analysis. Besides, their water/electrolyte absorption capacity and dimensional change, induced by the electrolyte uptake, were studied. Ionic conductivity of PPO-TMA, PPO-MPY, and PPO-MIM was determined using electrochemical impedance spectroscopy to be 0.17, 0.16, and 0.003 mS/cm, respectively. Zincate crossover evaluation tests revealed very low zincate diffusion coefficient of 1.13 × 10-8, and 0.28 × 10-8 cm2/min for PPO-TMA, and PPO-MPY, respectively. Moreover, galvanostatic discharge performance of the primary batteries assembled using PPO-TMA and PPO-MPY as initial battery tests showed a high specific discharge capacity and specific power of ~800 mAh/gZn and 1000 mWh/gZn, respectively. Low zincate crossover and high discharge capacity of these separator membranes makes them potential materials to be used in zinc-air batteries.
    Matched MeSH terms: Electrochemistry
  14. Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM
    Int J Mol Sci, 2019 Jul 09;20(13).
    PMID: 31323971 DOI: 10.3390/ijms20133369
    Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.
    Matched MeSH terms: Electrochemistry
  15. Beishenaliev A, Lim SS, Tshai KY, Khiew PS, Moh'd Sghayyar HN, Loh HS
    J Mater Sci Mater Med, 2019 May 24;30(6):62.
    PMID: 31127374 DOI: 10.1007/s10856-019-6264-4
    This study aimed to explore a potential use of fish scale-derived gelatin nanofibrous scaffolds (GNS) in tissue engineering due to their biological and economical merits. Extraction of gelatin was achieved via decalcification, sonication and lyophilization of mixed fish scales. To fabricate nano-scale architecture of scaffolds analogous to natural extracellular matrix, gelatin was rendered into nanofibrous matrices through 6-h electrospinning, resulting in the average diameter of 48 ± 12 nm. In order to improve the water-resistant ability while retaining their biocompatibility, GNS were physically crosslinked with ultraviolet (UV) irradiation for 5 min (UGN5), 10 min (UGN10) and 20 min (UGN20). On average, the diameter of nanofibers increased by 3 folds after crosslinking, however, Fourier transform infrared spectroscopy analysis confirmed that no major alterations occurred in the functional groups of gelatin. A degradation assay showed that UGN5 and UGN10 scaffolds remained in minimum essential medium for 14 days, while UGN20 scaffolds degraded completely after 10 days. All UGN scaffolds promoted adhesion and proliferation of human keratinocytes, HaCaT, without causing an apparent cytotoxicity. UGN5 scaffolds were shown to stimulate a better growth of HaCaT cells compared to other scaffolds upon 1 day of incubation, whereas UGN20 had a long-term effect on cells exhibiting 25% higher cell proliferation than positive control after 7 days. In the wound scratch assay, UGN5 scaffolds induced a rapid cell migration closing up to 79% of an artificial wound within 24 h. The current findings provide a new insight of UGN scaffolds to serve as wound dressings in the future. In the wound scratch assay, UGN5 induced a rapid cell migration closing up to 79% of an artificial wound within 24 h.
    Matched MeSH terms: Electrochemistry
  16. Letchumanan I, Md Arshad MK, Balakrishnan SR, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:40-47.
    PMID: 30716591 DOI: 10.1016/j.bios.2019.01.042
    This paper primarily demonstrates the approach to enhance the sensing performance on antigen C-reactive protein (CRP) and anti-CRP antibody binding event. A nanogapped electrode structure with the gap of ~100 nm was modified by the anti-CRP antibody (Probe) to capture the available CRP. In order to increase the amount of antigen to be captured, a gold nanorod with 119 nm in length and 25 nm in width was integrated, to increase the surface area. A comparative study between the existence and non-existence of gold nanorod utilization was evaluated. Analysis of the sensing surface was well-supported by atomic force microscopy, scanning electron microscopy, 3D nano-profilometry, high-power microscopy and UV-Vis spectroscopy. The dielectric voltammetric analysis was carried out from 0 V to 2 V. The sensitivity was calculated based on 3σ and attained as low as 1 pM, which is tremendously low compared to real CRP concentration (119 nM) in human blood serum. The gold nanorod conjugation with antibody has enhanced the sensitivity to 100 folds (10 fM). The specificity of the CRP detection by the proposed strategy was anchored by ELISA and failure in the detection of human blood clotting factor IX by voltammetry. Despite, CRP antigen was further detected in human serum by spiking CRP to run-through the detection with the physiologically relevant samples.
    Matched MeSH terms: Electrochemistry*
  17. Mussa ZH, Al-Qaim FF, Yuzir A, Latip J
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10044-10056.
    PMID: 30756352 DOI: 10.1007/s11356-019-04301-3
    Poor removal of many pharmaceuticals and personal care products in sewage treatment plants leads to their discharge into the receiving waters, where they may cause negative effects for aquatic environment and organisms. In this study, electrochemical removal process has been used as alternative method for removal of mefenamic acid (MEF). For our knowledge, removal of MEF using electrochemical process has not been reported yet. Effects of initial concentration of mefenamic acid, sodium chloride (NaCl), and applied voltage were evaluated for improvement of the efficiency of electrochemical treatment process and to understand how much electric energy was consumed in this process. Removal percentage (R%) was ranged between 44 and 97%, depending on the operating parameters except for 0.1 g NaCl which was 9.1%. Consumption energy was 0.224 Wh/mg after 50 min at 2 mg/L of mefenamic acid, 0.5 g NaCl, and 5 V. High consumption energy (0.433 Wh/mg) was observed using high applied voltage of 7 V. Investigation and elucidation of the transformation products were provided by Bruker software dataAnalysis using liquid chromatography-time of flight mass spectrometry. Seven chlorinated and two non-chlorinated transformation products were investigated after 20 min of electrochemical treatment. However, all transformation products (TPs) were eliminated after 140 min. For the assessment of the toxicity, it was impacted by the formation of transformation products especially between 20 and 60 min then the inhibition percentage of E. coli bacteria was decreased after 80 min to be the lowest value.
    Matched MeSH terms: Electrochemistry
  18. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
    Matched MeSH terms: Electrochemistry/instrumentation*; Electrochemistry/methods*
  19. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Electrochemistry
  20. Alim S, Vejayan J, Yusoff MM, Kafi AKM
    Biosens Bioelectron, 2018 Dec 15;121:125-136.
    PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051
    The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
    Matched MeSH terms: Electrochemistry/trends*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links