Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Goodman G, Poznanski RR, Cacha L, Bercovich D
    J Integr Neurosci, 2015 Sep;14(3):281-93.
    PMID: 26477360 DOI: 10.1142/S0219635215500235
    Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0[Formula: see text]T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access) - a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.
    Matched MeSH terms: Electromagnetic Phenomena
  2. Chua, S.K., Singh, Devinder K.A., Rajaratnam, B.S., Mokhtar, Sabarul A., Sridharan, R., Gan, K.B., et al.
    MyJurnal
    Older adults are at risk of osteoporotic fractures. Osteoporotic vertebral fractures are associated with a reduced cross-sectional area and muscle strength of the back extensor muscles, increased intramuscular fat infiltration and thoracic and lumbar curvature alterations. This study proposed a protocol to examine in more detail the contributions of altered spinal morphological, physical performance and biochemical markers to the risk of developing osteoporotic vertebral fractures. In this cross-sectional study, we plan to recruit 100 adults aged 50 years and above from an orthopaedic clinic, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia. The fracture prediction tool (FRAX) will be used to categorise high and low risk groups. Back muscle strength will be quantified using a load cell system. Thoracolumbar curvatures will be examined using an electromagnetic tracking system and intramuscular fat infiltration in the lumbar muscles will be measured using Magnetic Resonance Imaging. The Short Physical Performance Battery and JAMA dynamometer will quantify physical performance and the European Quality of Life Questionnaire will be used to assess self-perceived quality of life. Biochemical markers of serum C terminal telopeptide and N terminal propeptide of type I procollagen will be assessed using an enzyme-linked immunosorbent assays kit. A spine-specific model using regression analysis will be developed to predict osteoporotic vertebral fractures using the measured parameters in the present study.
    Matched MeSH terms: Electromagnetic Phenomena
  3. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Electromagnetic Phenomena
  4. Centeno A, Xie F, Alford N
    IET Nanobiotechnol, 2013 Jun;7(2):50-8.
    PMID: 24046905
    Metal-induced fluorescence enhancement (MIFE) is a promising strategy for increasing the sensitivity of fluorophores used in biological sensors. This study uses the finite-difference time-domain technique to predict the fluorescent enhancement rate of a fluorophore molecule in close proximity to a gold or silver spherical nanoparticle. By considering commercially available fluorescent dyes the computed results are compared with the published experimental data. The results show that MIFE is a complex coupling process between the fluorophore molecule and the metal nanoparticle. Nevertheless using computational electromagnetic techniques to perform calculations it is possible to calculate, with reasonable accuracy, the fluorescent enhancement. Using this methodology it will be possible to consider different shaped metal nanoparticles and any supporting substrate material in the future, an important step in building reliable biosensors capable of detecting low levels of proteins tagged with fluorescence molecules.
    Matched MeSH terms: Electromagnetic Phenomena
  5. Dzulkarnain AA, Che Azid N
    Med J Malaysia, 2014 Aug;69(4):156-61.
    PMID: 25500842 MyJurnal
    AIM OF STUDY: This study investigated the consistency in Auditory Brainstem Response (ABR) waveform evaluations between two audiologists (inter-audiologist agreement) and within each of the audiologist (intra-audiologist agreement).
    METHODS: Two audiologists from one of the audiology clinics in Kuantan, Pahang, Malaysia were involved in this study. Both audiologists were required to identify and mark the presence of Waves I, III and V in 66 ABR waveforms. Over a one-month interval, each audiologist was required to carry out the same procedure on the same ABR waveforms. This process was continued until we had three separate reviews from each audiologist.
    RESULTS: There was a high inter-audiologist ABR waveform identification agreement (over the range 81.71-89.77%), but a lower intra-audiologist ABR waveform identification agreement (over the range 50%-78%) for both audiologists. Our results also showed a high intra-audiologist ABR latency agreement within 0.2 ms (>90%), but a slightly lower inter-audiologist latency agreement (75-84%) within 0.2 ms.
    CONCLUSION: Our results support the need for the clinic to implement further strategies for improving the respective lower agreements and consistencies. These include conducting a continuous education program and using an objective algorithm to support their interpretations.

    Study site:; International Islamic University, Malaysia (IIUM) Hearing
    and Speech Clinic
    Matched MeSH terms: Electromagnetic Phenomena
  6. Attias E, Thomas D, Sherman D, Ismail K, Constable S
    Sci Adv, 2020 Nov;6(48).
    PMID: 33239299 DOI: 10.1126/sciadv.abd4866
    Conventional hydrogeologic framework models used to compute ocean island sustainable yields and aquifer storage neglect the complexity of the nearshore and offshore submarine environment. However, the onshore aquifer at the island of Hawai'i exhibits a notable volumetric discrepancy between high-elevation freshwater recharge and coastal discharge. In this study, we present a novel transport mechanism of freshwater moving from onshore to offshore through a multilayer formation of water-saturated layered basalts with interbedded low-permeability layers of ash/soil. Marine electromagnetic imaging reveals ∼35 km of laterally continuous resistive layers that extend to at least 4 km from west of Hawai'i's coastline, containing about 3.5 km3 of freshened water. We propose that this newly found transport mechanism of fresh groundwater may be the governing mechanism in other volcanic islands. In such a scenario, volcanic islands worldwide can use these renewable offshore reservoirs, considered more resilient to climate change-driven droughts, as new water resources.
    Matched MeSH terms: Electromagnetic Phenomena
  7. Yusof Y, Moosavi S, Johan MR, Badruddin IA, Wahab YA, Hamizi NA, et al.
    ACS Omega, 2021 Feb 16;6(6):4184-4191.
    PMID: 33644542 DOI: 10.1021/acsomega.0c04864
    This study presents the electromagnetic (EM) characterization of a multiwalled carbon nanotubes (MWCNT)-silver nanoparticles (AgNP)-reinforced poly(vinyl alcohol) (PVA) hybrid nanocomposite fabricated via the solution mixing technique. Primarily, the structure and morphological properties of the PVA/MWCNT-AgNP hybrid nanocomposite are confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The complex permittivity (ε*) and permeability (μ*), as well as the electromagnetic scattering parameters are measured using a PNA network analyzer equipped with X-band waveguide. The results showed an enhanced permittivity (ε' ≈ 25) value of the hybrid nanocomposite in the frequency range of 8-12 GHz. However, the permeability decreased to almost zero (μ' ≈ 0.4) since the inclusion of AgNP with an average particle size of 40 nm is not susceptible to magnetization and causes higher magnetic losses (tan δμ) than dielectric losses (tan δε). Remarkably, the hybrid nanocomposite reduced transmission of electromagnetic (EM) wave by nearly 60% in comparison to PVA/MWCNT. This is attributed to the enhanced absorption and reflection at the nanotubes, and metal-dielectric interfaces have induced multiple internal reflections owing to the porous structure of the nanocomposite. The prospect of the PVA/MWCNT-AgNP hybrid nanocomposite is favorable as a thin absorbing material for EM shielding applications.
    Matched MeSH terms: Electromagnetic Phenomena
  8. Fadzidah Mohd Idris, Khamirul Amin Matori, Idza Riati Ibrahim, Rodziah Nazlan, Mohd Shamsul Ezzad Shafie
    MyJurnal
    The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.

    Matched MeSH terms: Electromagnetic Phenomena
  9. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
    Matched MeSH terms: Electromagnetic Phenomena
  10. Mahmud MZ, Islam MT, Misran N, Almutairi AF, Cho M
    Sensors (Basel), 2018 Sep 05;18(9).
    PMID: 30189633 DOI: 10.3390/s18092951
    Globally, breast cancer is reported as a primary cause of death in women. More than 1.8 million new breast cancer cases are diagnosed every year. Because of the current limitations on clinical imaging, researchers are motivated to investigate complementary tools and alternatives to available techniques for detecting breast cancer in earlier stages. This article presents a review of concepts and electromagnetic techniques for microwave breast imaging. More specifically, this work reviews ultra-wideband (UWB) antenna sensors and their current applications in medical imaging, leading to breast imaging. We review the use of UWB sensor based microwave energy in various imaging applications for breast tumor related diseases, tumor detection, and breast tumor detection. In microwave imaging, the back-scattered signals radiating by sensors from a human body are analyzed for changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric constants because of their high water content. The goal of this article is to provide microwave researchers with in-depth information on electromagnetic techniques for microwave imaging sensors and describe recent developments in these techniques.
    Matched MeSH terms: Electromagnetic Phenomena
  11. Dorraj M, Zakaria A, Abdollahi Y, Hashim M, Moosavi S
    ScientificWorldJournal, 2014;2014:741034.
    PMID: 25243225 DOI: 10.1155/2014/741034
    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.
    Matched MeSH terms: Electromagnetic Phenomena*
  12. Cacha LA, Poznanski RR
    J Integr Neurosci, 2014 Jun;13(2):253-92.
    PMID: 25012712 DOI: 10.1142/S0219635214400081
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
    Matched MeSH terms: Electromagnetic Phenomena*
  13. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Electromagnetic Phenomena
  14. Mohd Nawawi, Hariri Arifin M, Fathi M. Abdullah, Kayode J, Nuraddeen Usman, Arisona, et al.
    Sains Malaysiana, 2017;46:529-535.
    Development of hot spring touristic projects receives more interest in Malaysia in recent years since the country has a high potential of hot springs that are vital to the economy. However, such developmental activities could produce negative impacts if not accompanied with adequate knowledge of the subsurface conditions. Active multichannel analysis of surface waves (MASW) was applied to determine the subsurface shear wave velocities and Vs30. The inverted shear waves velocity models have then presented in both vertical cross-sectional plots and depth slices maps. Depth slices were chosen at about 5, 18.5 m and 32 m depths. Model obtained showed that the soil is stiffer near the highway side and turns to be softer as we go away in the scrub direction. Vs30 is also estimated and mapped to show the quality of the soil. Inverted parameters showed that the soil at the site ranges from soft soil to stiff one. Also, the result obtained proposed that the surface occurrence of the hot spring might be a result of intersection of faulted segments, where hot spring is located near the intersection points. Furthermore, the model helped in proposing a suitable for complex extension. The proposed is chosen such that it minimize any possible effects on the geothermal resources at the site.
    Matched MeSH terms: Electromagnetic Phenomena
  15. Azharudin Mukhtaruddin, Muzamir Isa, Mohd Fadzil Ain, Mazlee Mohd Noor, Mohd Rafi Adzman, Mohamad Nur Khairul Hafizi Rohani
    MyJurnal
    Partial discharge (PD) is a phenomenon that may lead to dielectric breakdown and can provide important information for condition monitoring on electrical power equipment, in particular transformer. One of the methods is the detection of the electromagnetic (EM) wave signal emitted by PD. Although the frequency spectrum in EM is very wide, this paper discusses the detection of EM only at ultra-high frequency (UHF). One of the detectors that can be used to detect EM is the antenna. There are a lot of antenna designs that have been proposed to detect the signal. The designs can be generally divided into two: PCB-based design and physical antenna design. An example of the latter is monopole. Some of the proposed antennas were left at the design stage while others went to be applied in actual PD experimentation. Discussion on the capabilities of these antennas can lead to the selection of a suitable antenna.
    Matched MeSH terms: Electromagnetic Phenomena
  16. Rahman MA, Ahamed E, Faruque MRI, Islam MT
    Sci Rep, 2018 Oct 08;8(1):14948.
    PMID: 30297730 DOI: 10.1038/s41598-018-33295-0
    Various techniques are commonly used to produce nano-crystalline NiAl2O4 materials; however, their practical applications in the microwave region remain very limited. In this work, flexible substrates for metamaterials containing two different concentrations of NiAl2O4 (labelled Ni36 and Ni42) have been synthesised using a sol-gel method. The formation of spinel structures in the synthesised materials is confirmed, and their crystalline sizes are determined using scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray techniques. The dielectric properties, conductivities, loss tangents, and other parameters of the NiAl2O4-based substrates are analysed to evaluate their applicability as dielectric materials for the microwave frequency range. The obtained results show that the fabricated Ni36 and Ni42 nickel aluminates possess dielectric constants of 4.94 and 4.97 and loss tangents of 0.01 and 0.007, respectively; in addition, they exhibit high flexibility and light weight, which make them suitable for applications as metamaterial substrates. The synthesised structures are also validated experimentally using a commercially available electromagnetic simulator; as a result, double negative behaviour of the flexible metamaterials has been observed. Furthermore, it is found that the prepared NiAl2O4 substrates can be used in the S-, C-, and X-bands of the microwave frequency region.
    Matched MeSH terms: Electromagnetic Phenomena
  17. Siswanto, W.A., Syiddiq, M.
    MyJurnal
    This paper presents a mathematical model of the traditional musical instrument, the kompang. In this study, a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinates by implementing the Fourier-Bessel wave function. The wave equation in polar direction is applied to provide the vibration modes of the membrane with the corresponding natural frequencies of the circular membrane. The initial and boundary conditions are determined to allow the development of numerical equation based on kompang membrane attachment. The mathematical model is coded in Smath for the numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials i.e. goat-skin and x-ray film are tried to test the model. The Finite Element Method (FEM) programme, Mecway, shows that the natural frequencies and the corresponding mode shapes are comparable with those from the developed model.
    Matched MeSH terms: Electromagnetic Phenomena
  18. Huang C, Lou C, Chuang Y, Lin J, Liu C, Yu Z
    Sains Malaysiana, 2015;44:1757-1763.
    Following rapid technological and industrial development, factories have been equipped with a great deal of machines.
    The blend of industrial and residential areas in turn resulted in many environmental problems. In particular, machine
    operation causes noise pollution that easily causes physiological and psychological discomfort for the human body thus
    makes noise abatement a crucial and urgent issue. In this study, vermiculite functional fillers were added to polyurethane
    (PU) foam mixtures in order to form sound absorbent PU foams. The correlations between the contents of functional fillers
    and the sound absorption of flexible and rigid PU foams were then examined. The optimal PU foams were combined with
    PET/carbon fiber matrices in order to yield the electromagnetic shielding effectiveness. The sound absorption, noise
    reduction coefficient (NRC), electromagnetic shielding effectiveness and resilience rate of the composite boards were
    finally evaluated. The test results indicated that rigid PU foam composites can reach a sound absorption coefficient of
    0.8 while the flexible PU foam composites have higher mechanical properties.
    Matched MeSH terms: Electromagnetic Phenomena
  19. Daud MZ, Mohamed A, Hannan MA
    ScientificWorldJournal, 2014;2014:271087.
    PMID: 24883374 DOI: 10.1155/2014/271087
    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
    Matched MeSH terms: Electromagnetic Phenomena
  20. Eteng AA, Abdul Rahim SK, Leow CY, Chew BW, Vandenbosch GA
    PLoS One, 2016;11(2):e0148808.
    PMID: 26890878 DOI: 10.1371/journal.pone.0148808
    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
    Matched MeSH terms: Electromagnetic Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links