Displaying publications 1 - 20 of 165 in total

Abstract:
Sort:
  1. de Azevedo JP, Nascimento LR, Cortinovis MC, Oliveira SS, da Costa EV, da Silva EE
    J Clin Virol, 2004 Dec;31(4):248-52.
    PMID: 15494264 DOI: 10.1016/j.jcv.2004.04.007
    BACKGROUND: Human adenoviruses are classified into six species, A-F, and 51 serotypes are recognized. Adenoviruses can cause a broad range of diseases. Serotypes 3, 7 and 21 are most commonly associated with CNS disease. Serotype 21 (specie B) was isolated from brain tissue and CSF of patients with acute flaccid paralysis (AFP) in Malaysia.
    OBJECTIVES: Characterize, by molecular methods, species B adenoviruses isolated from poliomyelitis-suspected cases and investigate the possible etiological role of adenoviruses in acute flaccid paralysis (AFP).
    STUDY DESIGN: 622 virus isolates, including Sabin-related polioviruses, non-polio enteroviruses (NPEV) and adenoviruses, were recovered from fecal specimens in our laboratory during the period of 1997-2002 from AFP cases occurring in Brazil, Peru and Bolivia. Negative controls consisted of 528 fecal specimens collected from healthy children <==5 of age. Of these, 478 were contacts of AFP negative cases and 50 were from a day-care center.
    RESULTS: Sixty-four adenovirus strains isolated in HEp2 (human laryngeal tumor cells) cells were confirmed as such by an adenovirus-group specific PCR. Nucleotide sequencing identified the following adenovirus species: A (3 isolates), B (20 isolates), C (38 isolates), D (2 isolates) and E (1 isolate). The following serotypes belonging to the species B were identified: Ad3 (1 strain), Ad7 (17 strains) and, Ad16 (2 strains).
    CONCLUSION: Other viral agents became more recognized in association with CNS diseases in areas where wild polioviruses have been eradicated. The possible role of species B adenoviruses in the etiology of AFP cases similar to that caused by wild poliovirus is discussed.
    Matched MeSH terms: Enterovirus Infections/epidemiology; Enterovirus Infections/virology*
  2. Yoke-Fun C, AbuBakar S
    BMC Microbiol, 2006 Aug 30;6:74.
    PMID: 16939656
    BACKGROUND: Human enterovirus 71 (EV-71) is a common causative agent of hand, foot and mouth disease (HFMD). In recent years, the virus has caused several outbreaks with high numbers of deaths and severe neurological complications. Several new EV-71 subgenotypes were identified from these outbreaks. The mechanisms that contributed to the emergence of these subgenotypes are unknown.

    RESULTS: Six EV-71 isolates from an outbreak in Malaysia, in 1997, were sequenced completely. These isolates were identified as EV-71 subgenotypes, B3, B4 and C2. A phylogenetic tree that correlated well with the present enterovirus classification scheme was established using these full genome sequences and all other available full genome sequences of EV-71 and human enterovirus A (HEV-A). Using the 5' UTR, P2 and P3 genomic regions, however, isolates of EV-71 subgenotypes B3 and C4 segregated away from other EV-71 subgenotypes into a cluster together with coxsackievirus A16 (CV-A16/G10) and EV-71 subgenotype C2 clustered with CV-A8. Results from the similarity plot analyses supported the clustering of these isolates with other HEV-A. In contrast, at the same genomic regions, a CV-A16 isolate, Tainan5079, clustered with EV-71. This suggests that amongst EV-71 and CV-A16, only the structural genes were conserved. The 3' end of the virus genome varied and consisted of sequences highly similar to various HEV-A viruses. Numerous recombination crossover breakpoints were identified within the non-structural genes of some of these newer EV-71 subgenotypes.

    CONCLUSION: Phylogenetic evidence obtained from analyses of the full genome sequence supports the possible occurrence of inter-typic recombination involving EV-71 and various HEV-A, including CV-A16, the most common causal agent of HFMD. It is suggested that these recombination events played important roles in the emergence of the various EV-71 subgenotypes.

    Matched MeSH terms: Enterovirus/classification; Enterovirus/genetics*; Enterovirus A, Human/genetics
  3. Yogarajah T, Ong KC, Perera D, Wong KT
    Sci Rep, 2017 07 19;7(1):5845.
    PMID: 28724943 DOI: 10.1038/s41598-017-05589-2
    Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1β were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.
    Matched MeSH terms: Enterovirus/physiology*
  4. Yogarajah T, Ong KC, Perera D, Wong KT
    Arch Virol, 2017 Mar;162(3):727-737.
    PMID: 27878462 DOI: 10.1007/s00705-016-3157-4
    Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.
    Matched MeSH terms: Enterovirus Infections; Enterovirus; Enterovirus A, Human
  5. Yogarajah T, Ong KC, Perera D, Wong KT
    J Virol, 2018 03 15;92(6).
    PMID: 29263272 DOI: 10.1128/JVI.01914-17
    Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.
    Matched MeSH terms: Enterovirus A, Human/physiology*; Enterovirus C, Human/physiology*
  6. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
    Matched MeSH terms: Enterovirus A, Human/genetics*; Enterovirus A, Human/growth & development*
  7. Yee PTI, Laa Poh C
    Virology, 2017 06;506:121-129.
    PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017
    Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
    Matched MeSH terms: Enterovirus Infections/immunology; Enterovirus Infections/prevention & control*; Enterovirus Infections/virology; Enterovirus/genetics*; Enterovirus/immunology; Enterovirus/pathogenicity*
  8. Yee PTI, Poh CL
    Int J Med Sci, 2018;15(11):1143-1152.
    PMID: 30123051 DOI: 10.7150/ijms.26450
    Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
    Matched MeSH terms: Enterovirus Infections/immunology*; Enterovirus A, Human/immunology*
  9. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Enterovirus A, Human/genetics; Enterovirus A, Human/immunology*; Enterovirus A, Human/isolation & purification
  10. Yee PT, Poh CL
    Viruses, 2015 Dec 30;8(1).
    PMID: 26729152 DOI: 10.3390/v8010001
    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
    Matched MeSH terms: Enterovirus A, Human/genetics; Enterovirus A, Human/immunology*
  11. Yee PT, Tan KO, Othman I, Poh CL
    Virol J, 2016 11 28;13(1):194.
    PMID: 27894305
    BACKGROUND: Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells.

    RESULTS: In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262.

    CONCLUSIONS: The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.

    Matched MeSH terms: Enterovirus A, Human/genetics*; Enterovirus A, Human/growth & development*
  12. Yee PT, Poh CL
    Curr Pharm Des, 2016;22(44):6694-6700.
    PMID: 27510488 DOI: 10.2174/1381612822666160720165613
    The Hand, Foot and Mouth Disease (HFMD) is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. Common HFMD symptoms are high fever (≥ 39°C), rashes, and ulcers but complications due to virulent EV-A71 may arise leading to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents. Recent studies have reported the emergence of novel antiviral agents and vaccines that utilize microRNAs (miRNAs). They belong to a class of small (19-24 nt) non coding RNA molecules. As miRNAs play a major role in the host regulatory system, there is a huge opportunity for interplay between host miRNAs and EV-A71 expressions. A total of 42 out of 64 miRNAs were up-regulated in EV-A71-infected cells. There was consistent up-regulation of miR-1246 gene expression that targeted the DLG3 gene which contributes to neurological pathogenesis. In contrast, miR-30a that targets calcium channels for membrane transportation was down-regulated. This leads to repression of EV-A71 replication. The impact of host miRNAs on immune activation, shutdown of host protein synthesis, apoptosis, signal transduction and viral replication are discussed. miRNAs have been used in the construction of live attenuated vaccines (LAV) such as the poliovirus LAV that has miRNA binding sites for let-7a or miR-124a. The miRNAbearing vaccine will not replicate in neuronal cells carrying the corresponding miRNA but could still replicate in the gastrointestinal tract and hence remains to act as immunogens. As such, miRNAs are attractive candidates to be developed as vaccines and antivirals.
    Matched MeSH terms: Enterovirus A, Human/drug effects*; Enterovirus A, Human/immunology*
  13. Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, et al.
    Virol J, 2016 Jan 06;13:5.
    PMID: 26738773 DOI: 10.1186/s12985-015-0454-6
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials.
    Matched MeSH terms: Enterovirus A, Human/drug effects; Enterovirus A, Human/physiology*
  14. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al.
    Nat Med, 2009 Jul;15(7):798-801.
    PMID: 19543282 DOI: 10.1038/nm.1992
    Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
    Matched MeSH terms: Enterovirus A, Human/pathogenicity*
  15. Wu WH, Kuo TC, Lin YT, Huang SW, Liu HF, Wang J, et al.
    PLoS One, 2013;8(12):e83711.
    PMID: 24391812 DOI: 10.1371/journal.pone.0083711
    Enterovirus 71 (EV71), a causative agent of hand, foot, and mouth disease can be classified into three genotypes and many subtypes. The objectives of this study were to conduct a molecular epidemiological study of EV71 in the central region of Taiwan from 2002-2012 and to test the hypothesis that whether the alternative appearance of different EV71 subtypes in Taiwan is due to transmission from neighboring countries or from re-emergence of pre-existing local strains. We selected 174 EV71 isolates and used reverse transcription-polymerase chain reaction to amplify their VP1 region for DNA sequencing. Phylogenetic analyses were conducted using Neighbor-Joining, Maximum Likelihood and Bayesian methods. We found that the major subtypes of EV71 in Taiwan were B4 for 2002 epidemic, C4 for 2004-2005 epidemic, B5 for 2008-2009 epidemic, C4 for 2010 epidemic and B5 for 2011-2012 epidemic. Phylogenetic analysis demonstrated that the 2002 and 2008 epidemics were associated with EV71 from Malaysia and Singapore; while both 2010 and 2011-2012 epidemics originated from different regions of mainland China including Shanghai, Henan, Xiamen and Gong-Dong. Furthermore, minor strains have been identified in each epidemic and some of them were correlated with the subsequent outbreaks. Therefore, the EV71 infection in Taiwan may originate from pre-existing minor strains or from other regions in Asia including mainland China. In addition, 101 EV71 isolates were selected for the detection of new recombinant strains using the nucleotide sequences spanning the VP1-2A-2B region. No new recombinant strain was found. Analysis of clinical manifestations showed that patients infected with C4 had significantly higher rates of pharyngeal vesicles or ulcers than patients infected with B5. This is the first study demonstrating that different EV 71 genotypes may have different clinical manifestations and the association of EV71 infections between Taiwan and mainland China.
    Matched MeSH terms: Enterovirus Infections/complications; Enterovirus Infections/epidemiology*; Enterovirus Infections/virology; Enterovirus A, Human/classification; Enterovirus A, Human/genetics; Enterovirus A, Human/isolation & purification*
  16. Wong KT, Ng KY, Ong KC, Ng WF, Shankar SK, Mahadevan A, et al.
    Neuropathol. Appl. Neurobiol., 2012 Aug;38(5):443-53.
    PMID: 22236252 DOI: 10.1111/j.1365-2990.2011.01247.x
    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished.
    Matched MeSH terms: Enterovirus Infections/pathology*; Enterovirus Infections/virology
  17. Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al.
    J. Neuropathol. Exp. Neurol., 2008 Feb;67(2):162-9.
    PMID: 18219253 DOI: 10.1097/nen.0b013e318163a990
    Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.
    Matched MeSH terms: Enterovirus A, Human/metabolism*
  18. Wong KT
    Neuropathol. Appl. Neurobiol., 2000 Aug;26(4):313-8.
    PMID: 10931364
    Two major epidemics of viral encephalitis occurred in Asia in 1997 and 1998. The first was a re-emergence of neurovirulent strains of enterovirus 71, which caused severe encephalomyelitis in children in Malaysia, Taiwan and Japan, on a background of hand, foot and mouth disease. Necropsy studies of patients who died of enterovirus 71 infection showed severe perivascular cuffing, parenchymal inflammation and neuronophagia in the spinal cord, brainstem and diencephalon, and in focal areas in the cerebellum and cerebrum. Although no viral inclusions were detected, immunohistochemistry showed viral antigen in the neuronal cytoplasm. Inflammation was often more extensive than neuronal infection, suggesting that other factors, in addition to direct viral cytolysis, may be involved in tissue damage. The second epidemic of viral encephalitis was the result of a novel paramyxovirus called Nipah, which mainly involved pig handlers in Malaysia and Singapore. Pathological evidence suggested that the endothelium of small blood vessels in the central nervous system was particularly susceptible to infection. This led to disseminated endothelial damage and syncytium formation, vasculitis, thrombosis, ischaemia and microinfarction. However, there was also evidence of neuronal infection by the virus and this may also have contributed to the neurological dysfunction in Nipah encephalitis. Some patients who seemed to recover from the acute symptoms have been re-admitted with clinical findings suggestive of relapsing encephalitis. As these two epidemics indicate, the emergence and re-emergence of viral encephalitides continue to pose considerable challenges to the neuropathologist, in establishing the diagnosis and unravelling the pathogenesis of the neurological disease.
    Matched MeSH terms: Enterovirus Infections/epidemiology*; Enterovirus Infections/pathology; Enterovirus Infections/virology*; Enterovirus/isolation & purification; Enterovirus/pathogenicity
  19. Wang Y, Li Y, Yang Y, Peng C, Fu X, Gu X, et al.
    Exp Ther Med, 2020 Jul;20(1):543-549.
    PMID: 32537012 DOI: 10.3892/etm.2020.8728
    The aim of the present study was to analyze the sequence of the VP1 gene in enterovirus 71 (EV71) isolates and to explore their genetic evolution, so as to provide a scientific basis for the clinical prevention and treatment of hand, foot and mouth disease. The fecal samples of 590 patients with suspected hand, foot and mouth disease treated at Yan'an Hospital (Kunming, China) between January 2015 and December 2016 were collected and EV71 nucleic acid was detected by fluorescence PCR. The viral RNA of EV71-positive samples was extracted, the VP1 gene was amplified by PCR and the products were sequenced. The VP1 gene sequence was analyzed using DNAMAN and MEGA (version 4.0) software and homologous modeling was performed using Pymol software. A total of 50 EV71-positive samples were identified and the detection rate was 8.47% (50/590 cases). All of the 50 EV71 strains were of the C4 subtype. The genetic distance between the strains detected in the present study and EV71 strains detected in Beijing, Anhui and Malaysia was 0.01-0.03, while that between the strains detected in the present study and Australian strains was 2.11. Homologous modeling indicated that the amino acid sequence of the VP1 gene of the detected strains had a H144Y mutation. There was no significant genetic variation in the EV71 strain within the 2-year period. In conclusion, the EV71 strains detected in the present study was similar to that detected in Beijing, Anhui and Malaysia but different to that from Australia. A point mutation was present in the amino acid sequence of the VP1 gene.
    Matched MeSH terms: Enterovirus; Enterovirus A, Human
  20. Van Tu P, Thao NTT, Perera D, Truong KH, Tien NTK, Thuong TC, et al.
    Emerg Infect Dis, 2007 Nov;13(11):1733-41.
    PMID: 18217559 DOI: 10.3201/eid1311.070632
    During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
    Matched MeSH terms: Enterovirus A, Human/genetics; Enterovirus A, Human/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links